New prospects of application of liquid crystal polymer cantilever
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 165-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

The manufacturing technique of a millimetric sizes cantilever from photo-driven azobenzene polymer is described. The cantilever oscillations under the influence of laser radiation are studied. The possibility of making a micron-sized cantilever by a femtosecond laser initiated two-photon polymerization technique is shown. Such cantilever can become the basis for a high sensitive sensor, controlled directly by light.
Keywords: azobenzene polymer, two-photon polymerization, photo-driven cantilever.
@article{UZERU_2020_54_3_a4,
     author = {H. L. Margaryan and N. H. Hakobyan and V. K. Abrahamyan and P. K. Gasparyan and A. S. Yeremyan and N. V. Tabiryan and R. Vergara},
     title = {New prospects of application of liquid crystal polymer cantilever},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {165--171},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a4/}
}
TY  - JOUR
AU  - H. L. Margaryan
AU  - N. H. Hakobyan
AU  - V. K. Abrahamyan
AU  - P. K. Gasparyan
AU  - A. S. Yeremyan
AU  - N. V. Tabiryan
AU  - R. Vergara
TI  - New prospects of application of liquid crystal polymer cantilever
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 165
EP  - 171
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a4/
LA  - en
ID  - UZERU_2020_54_3_a4
ER  - 
%0 Journal Article
%A H. L. Margaryan
%A N. H. Hakobyan
%A V. K. Abrahamyan
%A P. K. Gasparyan
%A A. S. Yeremyan
%A N. V. Tabiryan
%A R. Vergara
%T New prospects of application of liquid crystal polymer cantilever
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 165-171
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a4/
%G en
%F UZERU_2020_54_3_a4
H. L. Margaryan; N. H. Hakobyan; V. K. Abrahamyan; P. K. Gasparyan; A. S. Yeremyan; N. V. Tabiryan; R. Vergara. New prospects of application of liquid crystal polymer cantilever. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 165-171. http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a4/

[1] D. Yu. Fedyanin, Yu. V. Stebunov, “All-nanophotonic NEMS Biosensor on a Chip”, Nature. Scientific Reports, Published online, 2015 | DOI

[2] R. Legtenberg, H. A. C. Tilmans, “Electrostatically Driven Vacuum-encapsulated Polysilicon Resonators. Part I. Design and Fabrication”, Sens. Actuators, A, 45 (1994), 57–66 | DOI

[3] H. A. C. Tilmans, R. Legtenberg, “Electrostatically Driven Vacuum-encapsulated Polysilicon Resonators. Part II. Theory and Performance”, Sens. Actuators, A, 45 (1994), 67–84 | DOI

[4] X. L. Feng, R. He, P. Yang, M. L. Roukes, “Very High Frequency Silicon Nanowire Electromechanical Resonators”, Nano Lett., 7 (2007), 1953–1959 | DOI

[5] B. Ilic, S. Krylov, K. Aubin, R. Reichenbach, H. G. Craighead, “Optical Excitation of Nanoelectromechanical Oscillators”, Appl. Phys. Lett., 86 (2005), 193114 | DOI

[6] I. Bargatin, I. Kozinsky, M. L. Roukes, “Efficient Electrothermal Actuation of Multiple Modes of High-frequency Nanoelectromechanical Resonators”, Appl. Phys. Lett., 90:2 (2007), 093116 | DOI

[7] L. Jiang et al., “SiC Cantilever Resonators with Electrothermal Actuation”, Sens. Actuators, A, 128 (2006), 376–386 | DOI

[8] M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based Cantilevers for Sensing, Scanned Probe and Very High-frequency Applications”, Nat. Nanotech., 2 (2007), 114–120 | DOI

[9] S. C. Masmanidis et al., “Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation”, Science, 317 (2007), 780–783 | DOI

[10] J. L. Arlett, E. B. Myers, M. L. Roukes, “Comparative Advantages of Mechanical Biosensors”, Nat. Nanotech., 6 (2011), 203–215 | DOI

[11] A. Rahafrooz, S. Pourkamali, “High-Frequency Thermally Actuated Electromechanical Resonators with Piezoresistive Readout”, IEEE Trans. on Electron Dev., 58:4 (2011), 1205–1214 | DOI

[12] N. Sinha et al., “Piezoelectric Aluminum Nitride Nanoelectromechanical Actuators”, Appl. Phys. Lett., 95 (2009), 053106 | DOI