On locally-balanced 2-partitions of bipartite graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 137-145
Voir la notice de l'article provenant de la source Math-Net.Ru
A $2$-partition of a graph $G$ is a function $f:V(G)\rightarrow \{0,1\}$. A $2$-partition $f$ of a graph $G$ is a locally-balanced with an open neighborhood, if for every $v\in V(G)$, $\left\vert \vert \{u\in N_{G}(v)\colon\,f(u)=0\}\vert-\vert\{u\in N_{G}(v)\colon\,f(u)=1\}\vert \right\vert\leq 1$. A bipartite graph is $(a,b)$-biregular, if all vertices in one part have degree a and all vertices in the other part have degree $b$. In this paper we prove that the problem of deciding, if a given graph has a locally-balanced 2-partition with an open neighborhood is NP-complete even for $(3, 8)$-biregular bipartite graphs. We also prove that a $(2,2k+1)$-biregular bipartite graph has a locally-balanced $2$-partition with an open neighbourhood if and only if it has no cycle of length $2 (\mathrm{mod}~4)$. Next, we prove that if $G$ is a subcubic bipartite graph that has no cycle of length $2 (\mathrm{mod}~4)$, then $G$ has a locally-balanced $2$-partition with an open neighbourhood. Finally, we show that all doubly convex bipartite graphs have a locally-balanced $2$-partition with an open neighbourhood.
Keywords:
locally-balanced $2$-partition, NP-completeness, biregular bipartite graph, subcubic bipartite graph.
Mots-clés : bipartite graph
Mots-clés : bipartite graph
@article{UZERU_2020_54_3_a1,
author = {A. H. Gharibyan and P. A. Petrosyan},
title = {On locally-balanced 2-partitions of bipartite graphs},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {137--145},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/}
}
TY - JOUR AU - A. H. Gharibyan AU - P. A. Petrosyan TI - On locally-balanced 2-partitions of bipartite graphs JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 137 EP - 145 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/ LA - en ID - UZERU_2020_54_3_a1 ER -
%0 Journal Article %A A. H. Gharibyan %A P. A. Petrosyan %T On locally-balanced 2-partitions of bipartite graphs %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 137-145 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/ %G en %F UZERU_2020_54_3_a1
A. H. Gharibyan; P. A. Petrosyan. On locally-balanced 2-partitions of bipartite graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 137-145. http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/