Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2020_54_3_a1, author = {A. H. Gharibyan and P. A. Petrosyan}, title = {On locally-balanced 2-partitions of bipartite graphs}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {137--145}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/} }
TY - JOUR AU - A. H. Gharibyan AU - P. A. Petrosyan TI - On locally-balanced 2-partitions of bipartite graphs JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 137 EP - 145 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/ LA - en ID - UZERU_2020_54_3_a1 ER -
%0 Journal Article %A A. H. Gharibyan %A P. A. Petrosyan %T On locally-balanced 2-partitions of bipartite graphs %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 137-145 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/ %G en %F UZERU_2020_54_3_a1
A. H. Gharibyan; P. A. Petrosyan. On locally-balanced 2-partitions of bipartite graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 137-145. http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a1/
[1] G. Chartrand, P. Zhang, Chromatic Graph Theory, Discrete Mathematics and its Applications, CRC Press, 2009 | DOI | MR
[2] D. B. West, Introduction to Graph Theory, Prentice-Hall, N.J., 2001 | MR
[3] K. Andreev, H. Räcke, Balanced Graph Partitioning (Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures), Barcelona, Spain, 120–124 | DOI
[4] S. V. Balikyan, R. R. Kamalian, “On NP-Completeness of the Problem of Existence of Locally-balanced 2-partition for Bipartite Graphs $G$ with $D(G) = 3$”, Doklady NAN RA, 105:1 (2005), 21–27 | MR
[5] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973 | MR | Zbl
[6] A. Ghouila-Houri, “Caractérisation des matrices totalement unimodulaires”, C. R. Acad. Sci. (Paris), 254:7 (1962), 1192–1194 | MR | Zbl
[7] A. Hajnal, E. Szemeredi, “Proof of a conjecture of P. Erdős”, Combinatorial Theory and Its Applications, v. 2, North-Holland, London, 1969, 601–623 | MR
[8] W. Meyer, “Equitable Coloring”, American Mathematical Monthly, 80:8 (1973), 920–922 | DOI | MR | Zbl
[9] A. V. Kostochka, “Equitable Colorings of Outerplanar Graphs”, Discrete Mathematics, 258 (2002), 373–377 | DOI | MR | Zbl
[10] D. de Werra, “On Good and Equitable Colorings”, Cahiers du C.E.R.O., 17 (1975), 417–426 | MR
[11] A. V. Kostochka, M. Stiebitz, “A New Lower Bound on the Number of Edges in Colour-Critical Graphs and Hypergraphs”, J. Combin. Theory. Ser. B., 87:2 (2003), 374–402 | DOI | MR | Zbl
[12] M. Gerber, D. Kobler, Partitioning a Graph to Satisfy all Vertices, Technical Report, Swiss Federal Institute of Technology, Lausanne, 1998
[13] M. Gerber, D. Kobler, “Algorithmic Approach to the Satisfactory Graph Partitioning Problem”, European J. Oper. Res., 125 (2000), 283–291 | DOI | MR | Zbl
[14] C. Bazgan, Zs. Tuza, D. Vanderpooten, “The Satisfactory Partition Problem”, Discrete Applied Mathematics, 154 (2006), 1236–1245 | DOI | MR | Zbl
[15] S. V. Balikyan, R. R. Kamalian, “On NP-completeness of the Problem of Existence of Locally-balanced 2-partition for Bipartite Graphs $G$ with $D(G) = 4$ under the Extended Definition of the Neighbourhood of a Vertex”, Doklady NAN RA, 106:3 (2006), 218–226 | MR
[16] S. V. Balikyan, “On Existence of Certain Locally-balanced 2-partition of a Tree”, Mathematical Problems of Computer Science, 30 (2008), 25–30
[17] S. V. Balikyan, R. R. Kamalian, “On Existence of 2-partition of a Tree, which Obeys the Given Priority”, Mathematical Problems of Computer Science, 30 (2008), 31–35
[18] S. V. Balikyan, On Locally-balanced 2-partition of Some Bipartite Graphs (Proceedings of the XV International Conference “Mathematics. Computing. Education”), Barc Dubna, Russia, 2008, 13 pp.
[19] A. H. Gharibyan, P. A. Petrosyan, “Locally-balanced 2-partitions of Complete Multipartite Graphs”, Mathematical Problems of Computer Science, 49 (2018), 7–17 | MR
[20] A. G. Gharibyan, “On Locally-balanced 2-Partitions of Some Classes of Graphs”, Proceedings of the YSU, Physical and Mathematical Sciences, 54:1 (2020), 9–19 | DOI | MR
[21] W. T. Tutte, “The Subgraph Problem”, Ann. Discrete Math., 3 (1978), 289–295 | DOI | MR | Zbl
[22] A. Darmann, J. Döcker, “On a Simple Hard Variant of Not-All-Equal 3-Sat”, Theoretical Computer Science, 815 (2020), 147–152 | DOI | MR | Zbl