Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2020_54_3_a0, author = {A. A. Chubaryan and A. A. Hambardzumyan}, title = {On non-monotonous properties of some classical and nonclassical propositional proof systems}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {127--136}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a0/} }
TY - JOUR AU - A. A. Chubaryan AU - A. A. Hambardzumyan TI - On non-monotonous properties of some classical and nonclassical propositional proof systems JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 127 EP - 136 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a0/ LA - en ID - UZERU_2020_54_3_a0 ER -
%0 Journal Article %A A. A. Chubaryan %A A. A. Hambardzumyan %T On non-monotonous properties of some classical and nonclassical propositional proof systems %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 127-136 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a0/ %G en %F UZERU_2020_54_3_a0
A. A. Chubaryan; A. A. Hambardzumyan. On non-monotonous properties of some classical and nonclassical propositional proof systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 3, pp. 127-136. http://geodesic.mathdoc.fr/item/UZERU_2020_54_3_a0/
[1] A. S. Anikeev, “On Some Classification of Provable Propositional Formulas”, Matem. Zametki, 2 (1972), 165–174 | MR
[2] A. Chubaryan, A. Karabakhtsyan, G. Petrosyan, “Some Properties of Several Proof Systems for Intuitionistic, Johansson's and Monotone Propositional Logics”, JASR, 2 (2018), 61–72
[3] G. M. Zohrabyan, S. M. Sayadyan, A. A. Chubaryan, “Investigation of Monotonocity of Some Propositional System of Classical and Nonclassical Logics”, Reports of NAS RA, 119:1 (2019), 33–39 | MR
[4] A. A. Chubaryan, S. S. Sayadyan, G. M. Zohrabyan, “On Properties of Monotonocity and Strongly Monotonocity of Propositional Resolution Systems of Classical and Nonclassical Logics”, Sciences of Europe. Physics and Mathematics, 2:35 (2019), 74–79 (in Russian) | MR
[5] A. A. Hambardzumyan, H. A. Gasparyan, S. A. Hovhannisyan, A. A. Chubaryan, “On the Number of Minimal Tautologies and Properties of Their Proofs in Some Systems of Classical and Nonclassical Logics”, Mathematical Problems of Computer Science, 52:2 (2019), 70 pp. | MR
[6] A. A. Chubaryan, A. A. Hambardzumyan, H. A. Gasparyan, S. A Hovhannisyan, “On Some Properties of Minimal Tautologies of Classical and Nonclassical Logics”, Reports of NAS RA, 120:1 (2020), 4–5 (in Russian) | MR
[7] A. A. Hambardzumyan, “Investigation of Monotonous Properties for Frege Systems”, Mathematical Problems of Computer Science, 53:7 (2020), 70 pp. | MR
[8] S. A. Cook, R. A. Reckhow, “The Relative Efficiency of Propositional Proof Systems”, J. Symbolic Logic, 44 (1979), 36–50 | DOI | MR | Zbl
[9] S. C. Kleene, Introduction to Mathematics, D. Van Nostrand Company, Inc., New York, 1952, 348 pp. | MR
[10] A.A. Chubaryan, H.R. Bolibekyan, “On the sequential calculus of weak arithmetics”, Doklady NAN Armenii, 102:3 (2002), 214–218 (in Russian) | MR
[11] G. Mints, A. Kozhevnikov, “Intuitionistic Frege Systems are Polynomially Equivalent”, Zapiski Nauchnykh Seminarov POMI, 316 (2004), 129–146 | MR | Zbl
[12] S. Sayadyan, A. Chubaryan, “On Polynomially Equivalence of Minimal Frege Systems”, Mathematical Problems of Computer Science, 27 (20207), 141–144
[13] R. Harrop, “Concerning formulas of the types $A\to B\vee C$, $A\to\exists xB(x)$”, J. Symbolic Logic, 25 (1960), 27–32 | DOI | MR | Zbl
[14] S. Sayadyan, “On the Comparison of Some Propositional Proof Systems of Intuitionistic Logic”, YSU, Scientific Notes, 2 (2005), 25–30 (in Armenian) | Zbl
[15] A. A. Chubaryan, H. A. Tamazyan, A. S. Tshitoyan, “Some Improvement of Lower Bounds for Steps and Sizes of Proofs in Frege Systems”, Sciences of Europe, 1:37 (2019), 39–44 | MR