The influence of urea on G-quadruplex and i-motif structures in complementary DNA sequences
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 155-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study, the methods of circular dichroism and UV/Vis spectrophotometry were used to study the influence of urea on the structural transitions i-motif $\leftrightarrows$ unfolded single strand in cytosine-rich d[3$^{\prime}$-(CCCAAT)$_{3}$CCC-5)$^{\prime}$] region of telomeric DNA (Tel22C) and G-quadruplex $\leftrightarrows$ unfolded single strand in complementary guanine-rich strand d[5$^{\prime}$-A(GGGTTA)$_{3}$GGG-3$^{\prime}$] (Tel22G) at pH 5.5 and 400 mM Na$^+$. Under these conditions, Tel22C and Tel22G were found to form stable i-motif and G-quadruplex structures. It has been shown that urea (0–8 M) destabilizes the i-motif and G-quadruplex structures, but unlike thermal denaturation, it does not destroy the structures completely. The melting processes of G-quadruplex and i-motif are separated in the temperature scale (at any concentration of urea, the melting of the G-quadruplex starts at temperatures where the melting of the i-motif has already been completed.
Keywords: telomeric DNA, urea, circular dichroism, UV/Vis spectrophotometry.
Mots-clés : G-quadruplex, i-motif
@article{UZERU_2020_54_2_a5,
     author = {Y. B. Dalyan and L. G. Aslanyan and I. V. Vardanyan},
     title = {The influence of urea on {G-quadruplex} and i-motif structures in complementary {DNA} sequences},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {155--122},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a5/}
}
TY  - JOUR
AU  - Y. B. Dalyan
AU  - L. G. Aslanyan
AU  - I. V. Vardanyan
TI  - The influence of urea on G-quadruplex and i-motif structures in complementary DNA sequences
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 155
EP  - 122
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a5/
LA  - en
ID  - UZERU_2020_54_2_a5
ER  - 
%0 Journal Article
%A Y. B. Dalyan
%A L. G. Aslanyan
%A I. V. Vardanyan
%T The influence of urea on G-quadruplex and i-motif structures in complementary DNA sequences
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 155-122
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a5/
%G en
%F UZERU_2020_54_2_a5
Y. B. Dalyan; L. G. Aslanyan; I. V. Vardanyan. The influence of urea on G-quadruplex and i-motif structures in complementary DNA sequences. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 155-122. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a5/

[1] J. L. Huppert, “Four-Stranded DNA: Cancer, Gene Regulation and Drug Development”, Philos. Trans. R. Soc. A, 365 (2007), 2969–2984 | DOI

[2] L. H. Hurley, “DNA and Its Associated Processes as Targets for Cancer Therapy”, Nat. Rev. Cancer, 2 (2002), 188–200 | DOI

[3] L. Oganesian, T. M. Bryan, “Physiological Relevance of Telomeric G-quadruplex Formation: A Potential Drug Target”, BioEssays, 29 (2007), 155–165 | DOI

[4] J. L. Huppert, S. Balasubramanian, “Prevalence of Quadruplexes in the Human Genome”, Nucleic Acids Res., 33 (2005), 2908–2916 | DOI

[5] S. Balasubramanian, L. H. Hurley, S. Neidle, “Targeting G-quadruplexes in Gene Promoters: A Novel Anticancer Strategy?”, Nat. Rev. Drug Discov., 10 (2011), 261–275 | DOI

[6] N. Maizels, “G4-Associated Human Diseases”, EMBO Rep., 16 (2015), 910–922 | DOI

[7] A. De Cian, L. Lacroix, C. Douarre, et al., “Targeting Telomeres and Telomerase”, Biochimie, 90 (2008), 131–155 | DOI

[8] H. Abou Assi, M. Garavís, C. González, M. J. Damha, “i-Motif DNA: Structural Features and Significance to Cell Biology”, Nucleic Acids Res., 46 (2018), 8038–8056 | DOI

[9] K. Guo, V. Gokhale, L. H. Hurley, D. Sun, “Intramolecularly Folded G-quadruplex and i-Motif Structures in the Proximal Promoter of the Vascular Endothelial Growth Factor Gene”, Nucleic Acids Res., 36 (2008), 4598–4608 | DOI

[10] S. P. Gurung, C. Schwarz, J. P. Hall, C. J. Cardina, J. A. Brazier“. The Importance of Loop Length on the Stability of i-Motif Structures”, Chem. Commun., 51 (2015), 5630–5632 | DOI

[11] A. T. Phan, J. L. Mergny, “Human Telomeric DNA: G-quadruplex, i-Motif and Watson-Crick Double Helix”, Nucleic Acids Res., 30 (2002), 4618–4625 | DOI

[12] W. Li, D. Miyoshi, S. I. Nakano, N. Sugimoto, “Structural Competition Involving G-Quadruplex DNA and Its Complement”, Biochemistry, 42 (2003), 11736–11744 | DOI

[13] L. Aslanyan, J. Ko, B. G. Kim, I. Vardanyan, Y. B. Dalyan, T. V. Chalikian, “Effect of Urea on G-Quadruplex Stability”, J. Phys. Chem. B, 121 (2017), 6511–6519 | DOI

[14] A. Idili, F. Ricci, A. Vallee-Belisle, “Determining the Folding and Binding Free Energy of DNA-based Nanodevices and Nanoswitches Using Urea Titration Curves”, Nucleic Acids Res., 45 (2017), 7571–7580 | DOI

[15] L. A. Marky, K. J. Breslauer, “Calculating Thermodynamic Data for Transitions of any Molecularity from Equilibrium Melting Curves”, Biopolymers, 26:9 (1987), 1601–1620 | DOI