On constant coefficient PDE systems and intersection multiplicities
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the concept of the multiplicity of intersection points of plane algebraic curves $p,q=0,$ based on partial differential operators. We evaluate the exact number of maximal linearly independent differential conditions of degree $k$ for all $k\ge 0.$ On the other hand, this gives the exact number of maximal linearly independent polynomial and polynomial-exponential solutions, of a given degree $k,$ for homogeneous PDE system $p(D)f=0,$ $q(D)f=0.$
Keywords: intersection point, multiplicity, PDE system.
@article{UZERU_2020_54_2_a4,
     author = {N. K. Vardanyan},
     title = {On constant coefficient {PDE} systems and intersection multiplicities},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {108--114},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/}
}
TY  - JOUR
AU  - N. K. Vardanyan
TI  - On constant coefficient PDE systems and intersection multiplicities
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 108
EP  - 114
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/
LA  - en
ID  - UZERU_2020_54_2_a4
ER  - 
%0 Journal Article
%A N. K. Vardanyan
%T On constant coefficient PDE systems and intersection multiplicities
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 108-114
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/
%G en
%F UZERU_2020_54_2_a4
N. K. Vardanyan. On constant coefficient PDE systems and intersection multiplicities. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/

[1] M. G. Marinari, H. M. Möller, T. Mora, “On Multiplicities in Polynomial System Solving”, Trans. Amer. Math. Soc., 348 (1996), 3283–3321 | DOI | MR | Zbl

[2] H. A. Hakopian, “A Multivariate Analog of Fundamental Theorem of Algebra and Hermite Interpolation”, Proceedings of the International Conference on Constructive Theory of Functions (Varna, June 19-23), ed. Bojanov B. D., Darba, Sofia, 2002, 1–18 | MR

[3] H. A. Hakopian, M. G. Tonoyan, “Partial Differential Analogs of Ordinary Differential Equations and Systems”, New York J. Math., 10 (2004), 89–116 | MR | Zbl

[4] R. J. Walker, Algebraic Curves, Springer–Verlag, 1978 | MR | Zbl

[5] H. A. Hakopian, M. G. Tonoyan, “On a Multivariate Theory”, Approximation Theory, A Volume Dedicated to Blagovest Sendov, ed. Bojanov B.D., Darba, Sofia, 2002, 212–230 | MR | Zbl

[6] G. S. Avagyan, “On Multiplicity of Intersection Point of Two Plane Algebraic Curves”, Contemp. Math. Anal., 45 (2010), 123–127 | DOI | MR | Zbl