On constant coefficient PDE systems and intersection multiplicities
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider the concept of the multiplicity of intersection points of plane algebraic curves $p,q=0,$ based on partial differential operators. We evaluate the exact number of maximal linearly independent differential conditions of degree $k$ for all $k\ge 0.$ On the other hand, this gives the exact number of maximal linearly independent polynomial and polynomial-exponential solutions, of a given degree $k,$ for homogeneous PDE system $p(D)f=0,$ $q(D)f=0.$
Keywords:
intersection point, multiplicity, PDE system.
@article{UZERU_2020_54_2_a4,
author = {N. K. Vardanyan},
title = {On constant coefficient {PDE} systems and intersection multiplicities},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {108--114},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/}
}
TY - JOUR AU - N. K. Vardanyan TI - On constant coefficient PDE systems and intersection multiplicities JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 108 EP - 114 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/ LA - en ID - UZERU_2020_54_2_a4 ER -
%0 Journal Article %A N. K. Vardanyan %T On constant coefficient PDE systems and intersection multiplicities %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 108-114 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/ %G en %F UZERU_2020_54_2_a4
N. K. Vardanyan. On constant coefficient PDE systems and intersection multiplicities. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/