On constant coefficient PDE systems and intersection multiplicities
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the concept of the multiplicity of intersection points of plane algebraic curves $p,q=0,$ based on partial differential operators. We evaluate the exact number of maximal linearly independent differential conditions of degree $k$ for all $k\ge 0.$ On the other hand, this gives the exact number of maximal linearly independent polynomial and polynomial-exponential solutions, of a given degree $k,$ for homogeneous PDE system $p(D)f=0,$ $q(D)f=0.$
Keywords: intersection point, multiplicity, PDE system.
@article{UZERU_2020_54_2_a4,
     author = {N. K. Vardanyan},
     title = {On constant coefficient {PDE} systems and intersection multiplicities},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {108--114},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/}
}
TY  - JOUR
AU  - N. K. Vardanyan
TI  - On constant coefficient PDE systems and intersection multiplicities
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 108
EP  - 114
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/
LA  - en
ID  - UZERU_2020_54_2_a4
ER  - 
%0 Journal Article
%A N. K. Vardanyan
%T On constant coefficient PDE systems and intersection multiplicities
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 108-114
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/
%G en
%F UZERU_2020_54_2_a4
N. K. Vardanyan. On constant coefficient PDE systems and intersection multiplicities. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 108-114. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a4/