@article{UZERU_2020_54_2_a1,
author = {M. H. Avetisyan},
title = {On solvability of a nonlinear discrete system in the spread theory of infection},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {87--95},
year = {2020},
volume = {54},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a1/}
}
TY - JOUR AU - M. H. Avetisyan TI - On solvability of a nonlinear discrete system in the spread theory of infection JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 87 EP - 95 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a1/ LA - en ID - UZERU_2020_54_2_a1 ER -
%0 Journal Article %A M. H. Avetisyan %T On solvability of a nonlinear discrete system in the spread theory of infection %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 87-95 %V 54 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a1/ %G en %F UZERU_2020_54_2_a1
M. H. Avetisyan. On solvability of a nonlinear discrete system in the spread theory of infection. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 87-95. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a1/
[1] O. Diekmann, “Thresholds and Traveling Waves for the Geographical Spread of Infection”, J. Math. Biol., 69 (1978), 109–130 | DOI | MR | Zbl
[2] C. Gomez, H. Prado, S. Trofimchuk, “Separation Dichotomy and Wavefronts for a Nonlinear Convolution Equation”, J. Math. Anal. Appl., 420 (2014), 1–19 | DOI | MR | Zbl
[3] O. Diekmann, “Run for Your Life, a Note on the Asymptotic Speed of Propagation of an Epidemic”, J. Differ. Equations, 33 (1979), 58–73 | DOI | MR | Zbl
[4] A. Kh. Khachatryan, Kh. A. Khachatryan, “On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread”, Proc. Steklov Inst. Math., 306 (2019), 271–287 | MR | Zbl
[5] A. G. Sergeev, Kh. A. Khachatryan, “On the Solvability of a Class of Nonlinear Integral Equations in the Problem of a Spread of an Epidemic”, Trans. Moscow Math. Soc., 80 (2019), 95–111 | DOI | MR | Zbl
[6] Kh. A. Khachatryan, S. M. Andriyan, “On the Solvability of a Class of Discrete Matrix Equations with Cubic Nonlinearity”, Ukr. Math. J., 71 (2020), 1910–1928 | DOI