The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that the set of non-isomorphic $2$-generated $C^*$-simple relatively free groups has the cardinality of the continuum. A non-trivial identity is satisfied in any (not absolutely free) relatively free group. Hence, they cannot contain a non-abelian absolutely free subgroups. The question of the existence of $C^*$-simple groups without free subgroups of rank $2$ was posed by de la Harpe in 2007.
Keywords: relatively free groups, nonamenable group, reduced $C^*$-algebra of a group.
Mots-clés : $C^*$-simple group, amenable radical
@article{UZERU_2020_54_2_a0,
     author = {V. S. Atabekyan},
     title = {The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 81
EP  - 86
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/
LA  - en
ID  - UZERU_2020_54_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 81-86
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/
%G en
%F UZERU_2020_54_2_a0
V. S. Atabekyan. The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 81-86. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/

[1] P. de la Harpe, “On Simplicity of Reduced $C^*$-Algebras of Groups”, Bull. Lond. Math. Soc., 39 (2007), 1–26 | DOI | MR | Zbl

[2] M. M. Day, “Amenable Semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl

[3] E. Breuillard, M. Kalantar, M. Kennedy, N. Ozawa, “$C^*$-Simplicity and the Unique Trace Property for Discrete Groups”, Publ. Math. IHES, 126 (2017), 35–71 | DOI | MR | Zbl

[4] A. Le Boudec, “$C^*$-Simplicity and the Amenable Radical”, Inventiones Mathematicae, 209 (2017), 159–174 | DOI | MR | Zbl

[5] R. T. Powers, “Simplicity of the $C^*$-Algebra Associated with the Free Group on Two Generators”, Duke Math. J., 42 (1975), 151–156 | DOI | MR | Zbl

[6] W. L. Paschke, N. Salinas, “$C^*$-Algebras Associated with Free Products of Groups”, Pacific J. Math., 82 (1979), 211–221 | DOI | MR | Zbl

[7] M. R. Bridson, P. de la Harp, “Mapping Class Groups and Outer Automorphism Groups of Free Groups are $C^*$-Simple”, J. Funct. Anal., 212 (2004), 195–205 | DOI | MR | Zbl

[8] G. Arzhantseva, A. Minasyan, “Relatively Hyperbolic Groups are $C^*$-Simple”, J. Funct. Anal., 243 (2007), 345–351 | DOI | MR | Zbl

[9] A. Yu. Olshanskii, D. V. Osin, “$C^*$-Simple Groups without Free Subgroups”, Groups Geom. Dyn., 8:3 (2014), 933–983 | DOI | MR | Zbl

[10] S. I. Adyan, “Random Walks on Free Periodic Groups”, Math. USSR Izv., 21 (1983), 425–434 | DOI | MR | Zbl

[11] V. S. Atabekyan, “On Subgroups of Free Burnside Groups of Odd Exponent $n\ge 1003$”, Izv. Math., 73 (2009), 861–892 | DOI | MR | Zbl

[12] S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99 (2016), 631–635 | DOI | MR

[13] S. I. Adian, The Burnside Problem and Identities in Groups, v. 95, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–New York, 1970, xi+311 pp. | MR

[14] S. I. Adian, “Infinite Irreducible Systems of Group Identities”, Math. USSR Izv., 4 (1970), 721–739 | DOI | MR

[15] S. I. Adian, V. S. Atabekyan, “On Free Groups in the Infinitely Based Varieties of S.I. Adian”, Izv. Math., 81 (2017), 889–900 | DOI | MR | Zbl

[16] S. I. Adian, V. S. Atabekyan, “Normal Automorphisms of Free Groups of Infinitely Based Varieties”, Math. Notes, 108 (2020), 149–154 | DOI | MR

[17] S. I. Adian, I. G. Lysenok, “On Groups All of Whose Proper Subgroups are Finite Cyclic”, Math. USSR Izv., 39:2 (1992), 905–957 | DOI | MR