Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2020_54_2_a0, author = {V. S. Atabekyan}, title = {The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {81--86}, publisher = {mathdoc}, volume = {54}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/} }
TY - JOUR AU - V. S. Atabekyan TI - The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 81 EP - 86 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/ LA - en ID - UZERU_2020_54_2_a0 ER -
%0 Journal Article %A V. S. Atabekyan %T The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 81-86 %V 54 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/ %G en %F UZERU_2020_54_2_a0
V. S. Atabekyan. The set of $2$-genereted $C^*$-simple relatively free groups has the cardinality of the continuum. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 2, pp. 81-86. http://geodesic.mathdoc.fr/item/UZERU_2020_54_2_a0/
[1] P. de la Harpe, “On Simplicity of Reduced $C^*$-Algebras of Groups”, Bull. Lond. Math. Soc., 39 (2007), 1–26 | DOI | MR | Zbl
[2] M. M. Day, “Amenable Semigroups”, Illinois J. Math., 1 (1957), 509–544 | MR | Zbl
[3] E. Breuillard, M. Kalantar, M. Kennedy, N. Ozawa, “$C^*$-Simplicity and the Unique Trace Property for Discrete Groups”, Publ. Math. IHES, 126 (2017), 35–71 | DOI | MR | Zbl
[4] A. Le Boudec, “$C^*$-Simplicity and the Amenable Radical”, Inventiones Mathematicae, 209 (2017), 159–174 | DOI | MR | Zbl
[5] R. T. Powers, “Simplicity of the $C^*$-Algebra Associated with the Free Group on Two Generators”, Duke Math. J., 42 (1975), 151–156 | DOI | MR | Zbl
[6] W. L. Paschke, N. Salinas, “$C^*$-Algebras Associated with Free Products of Groups”, Pacific J. Math., 82 (1979), 211–221 | DOI | MR | Zbl
[7] M. R. Bridson, P. de la Harp, “Mapping Class Groups and Outer Automorphism Groups of Free Groups are $C^*$-Simple”, J. Funct. Anal., 212 (2004), 195–205 | DOI | MR | Zbl
[8] G. Arzhantseva, A. Minasyan, “Relatively Hyperbolic Groups are $C^*$-Simple”, J. Funct. Anal., 243 (2007), 345–351 | DOI | MR | Zbl
[9] A. Yu. Olshanskii, D. V. Osin, “$C^*$-Simple Groups without Free Subgroups”, Groups Geom. Dyn., 8:3 (2014), 933–983 | DOI | MR | Zbl
[10] S. I. Adyan, “Random Walks on Free Periodic Groups”, Math. USSR Izv., 21 (1983), 425–434 | DOI | MR | Zbl
[11] V. S. Atabekyan, “On Subgroups of Free Burnside Groups of Odd Exponent $n\ge 1003$”, Izv. Math., 73 (2009), 861–892 | DOI | MR | Zbl
[12] S. I. Adian, V. S. Atabekyan, “$C^*$-Simplicity of $n$-Periodic Products”, Math. Notes, 99 (2016), 631–635 | DOI | MR
[13] S. I. Adian, The Burnside Problem and Identities in Groups, v. 95, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin–New York, 1970, xi+311 pp. | MR
[14] S. I. Adian, “Infinite Irreducible Systems of Group Identities”, Math. USSR Izv., 4 (1970), 721–739 | DOI | MR
[15] S. I. Adian, V. S. Atabekyan, “On Free Groups in the Infinitely Based Varieties of S.I. Adian”, Izv. Math., 81 (2017), 889–900 | DOI | MR | Zbl
[16] S. I. Adian, V. S. Atabekyan, “Normal Automorphisms of Free Groups of Infinitely Based Varieties”, Math. Notes, 108 (2020), 149–154 | DOI | MR
[17] S. I. Adian, I. G. Lysenok, “On Groups All of Whose Proper Subgroups are Finite Cyclic”, Math. USSR Izv., 39:2 (1992), 905–957 | DOI | MR