A simple model of DNA adsorption on carbon nanotube
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the major interaction mechanisms between carbon nanotubes (CNT) and DNA is $\pi-\pi$ stacking, which is a van der Waals type of interaction. Attraction between the polycyclic aromatic surface elements of CNTs and the aromatic nucleotides of DNA leads to reversible adsorption (physisorption) between them. We propose to describe the ssDNA adsorption on CNT using Zipper model and address the connection between the thermodynamics of adsorption and the flexibility of ssDNA.
Keywords: DNA
Mots-clés : carbon nanotube, adsorption.
@article{UZERU_2020_54_1_a9,
     author = {A. Y. Mamasakhlisow and V. F. Morozov},
     title = {A simple model of {DNA} adsorption on carbon nanotube},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a9/}
}
TY  - JOUR
AU  - A. Y. Mamasakhlisow
AU  - V. F. Morozov
TI  - A simple model of DNA adsorption on carbon nanotube
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 65
EP  - 69
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a9/
LA  - en
ID  - UZERU_2020_54_1_a9
ER  - 
%0 Journal Article
%A A. Y. Mamasakhlisow
%A V. F. Morozov
%T A simple model of DNA adsorption on carbon nanotube
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 65-69
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a9/
%G en
%F UZERU_2020_54_1_a9
A. Y. Mamasakhlisow; V. F. Morozov. A simple model of DNA adsorption on carbon nanotube. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 65-69. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a9/

[1] C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, v. III, The Behavior of Biological Macromolecules, Freeman and Co., Oxford, 1980, 597 pp.

[2] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991), 56–58 | DOI

[3] S. R. Vogel, K. Muller, U. Plutowski, M. M. Kappes, C. Richert, “DNA-carbon Nanotube Interactions and Nanostructuring Based on DNA”, Phys. Stat. Sol. (b), 244 (2007), 4026–4029 | DOI

[4] F. K. Brunecker, F. Schoppler, T. Hertel, “Interaction of Polymers with Single-Wall Carbon Nanotubes”, Phys. Chem. C, 120:18 (2016), 10094–10103 | DOI

[5] Y. Kato, A. Inoue, Y. Niidome, N. Nakashima, “Thermodynamics on Soluble Carbon Nanotubes: How do DNA Molecules Replace Surfactants on Carbon Nanotubes?”, Scientific Reports, 2 (2012), 733

[6] E. V. Butyrskaya, S. A. Zapryagaev, E. A. Izmailova, “Cooperative Model of the Histidine and Alanine Adsorption on Single-walled Carbon Nanotubes”, Carbon, 143 (2019), 276–287

[7] J. A. Schellman, “The Factors Affecting the Stability of Hydrogen-bonded Polypeptide Structures in Solution”, J. Phys. Chem., 62 (1958), 1485–1494

[8] B. H. Zimm, J. K. Bragg, “Theory of the One-Dimensional Phase Transition in Polypeptide Chains”, J. Phys. Chem., 2 (1958), 1246–1247

[9] Sh. A. Hairyan, E. Sh. Mamasakhlisov, V. F. Morozov, “Helix–coil Transition in Polypeptides. A Microscopic Approach. II”, Biopolymers, 35:1 (1995), 75–84 | DOI

[10] V. F. Morozov, E. Sh. Mamasakhlisov, Sh. Hayryan, C. K. Hu, “Microscopical Approach to the Helix–Coil Transition in DNA”, Physica A, 281 (2000), 51–59 | DOI

[11] A. Badasyan, Sh. A. Tonoyan, A. Giacometti, R. Podgornik, Y. Sh. Mamasakhlisov, V. F. Morozov, “Osmotic Pressure Induced Coupling between Cooperativity and Stability of a Helix–Coil Transition”, Phys. Rev. Lett., 109 (2012), 068101 | DOI

[12] A. Badasyan, A. Giacometti, R. Podgornik et al., “Helix–coil Transition in Terms of Potts-like Spins”, Eur. Phys. J. E, 46:9 (2013), 46(9)

[13] A. Badasyan, A. Giacometti, Y. Sh. Mamasakhlisov, V. F. Morozov, A. S. Benight, “Microscopic Formulation of the Zimm-Bragg Model for the Helix–coil Transition”, Phys. Rev. E, 81 (2010), 021921(4) | DOI

[14] F. Albertorio, M. E. Hughes, J. A. Golovchenko, D. Branton, “Base Dependent DNA-carbon Nanotube Interactions: Activation Enthalpies and Assembly-disassembly Control”, Nanotechnology, 20:39 (2009), 395101 (9) | DOI