Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2020_54_1_a2, author = {M. G. Grigoryan and A. L. Ghazaryan and G. G. Kazaryan}, title = {On the uniform convergence of double {Furier--Walsh} series}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {20--28}, publisher = {mathdoc}, volume = {54}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/} }
TY - JOUR AU - M. G. Grigoryan AU - A. L. Ghazaryan AU - G. G. Kazaryan TI - On the uniform convergence of double Furier--Walsh series JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2020 SP - 20 EP - 28 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/ LA - en ID - UZERU_2020_54_1_a2 ER -
%0 Journal Article %A M. G. Grigoryan %A A. L. Ghazaryan %A G. G. Kazaryan %T On the uniform convergence of double Furier--Walsh series %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2020 %P 20-28 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/ %G en %F UZERU_2020_54_1_a2
M. G. Grigoryan; A. L. Ghazaryan; G. G. Kazaryan. On the uniform convergence of double Furier--Walsh series. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/
[1] G. D. Birkhoff, “Démonstration d'un théoreme elementaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475, 693–696 | Zbl
[2] G. R. MacLane, “Sequences of Derivatives and Normal Families”, J. Anal. Math., 2 (1952), 72–87 | DOI | MR | Zbl
[3] J. Marcinkiewicz, “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | Zbl
[4] K. G. Grosse-Erdmann, “Holomorphe Monster und Universelle Funktionen”, Mitt. Math. Sem. Giessen, 176 (1987), 1–84 | MR
[5] M. G. Grigorian, “On the Universal and Strong Property Related to Fourier-Walsh Series”, Banach J. of Math. Anal., 11:3 (2017), 698–712 | MR
[6] M. G. Grigorian, A. A. Sargsyan, “On the Universal Function for the Class $L^p[0;1]; p\in(0,1)$”, Journal of Func. Anal., 27:8 (2016), 3111–3133 | MR
[7] M. G. Grigorian, L. N.Galoyan, “On the Universal Functions”, Journal of Approximation Theory, 225 (2018), 191–208 | MR
[8] M. G. Grigorian, K. A. Navasardyan, “Universal Functions in Correction Problems Guaranteeing the Convergence of Fourier-Walsh Series”, Izv. RAN. Math., 80:6 (2016), 1057–1083 | MR
[9] M. Grigorian, T. Grigoryan, A. Sargsyan, “On the Universal Function for Weighted Spaces $L^p_\mu[0;1]; p\geq 1$”, Banach J. of Math. Anal., 12:1 (2018), 104–125 | MR
[10] M. Grigorian, A. A. Sargsyan, “The Structure of Universal Functions for $L^p[0;1]$-spaces, $p \in(0,1)$”, Mathematics, 209:1 (2018), 35–55 | MR
[11] M. G. Grigorian, L. N.Galoyan, “On Fourier Series That are Universal Modulo Signs”, Studia Math., 249:2 (2019), 215–231 | MR
[12] M. G. Grigorian, “O Functions Universal with Respect to the Classical Systems”, Adv. Oper. Theory, 5 (2020), 11–32 | DOI | MR
[13] M. Grigorian, “The Structure of Universal Functions for $L^p[0;1]$-spaces, $p \in(0,1)$”, Mathematics, 211:6 (2020), 32–58
[14] L. Carleson, “On Convergence and Growth of Partial Sumas of Fourier Series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl
[15] M. Riesz, “Sur les functions conjugees”, Math. Zeitshr., 27:2 (1927), 218–244 | MR | Zbl
[16] A. N. Kolmogorov, “Sur les Fonctions Harmoniques Conjuguées et les Séries de Fourier”, Fund. Math., 7 (1925), 23–28 | DOI
[17] C. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | MR | Zbl
[18] C. Fefferman, “The Multiple Problem for the Ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl
[19] M. G. Grigorian, “On the Convergence of the Spherical Partial Sums of the Double Fourier Series in the $p; p 2208(0;1)$ Metric”, Math. Zametki, 33:4 (1983) | MR | Zbl
[20] D. C. Harris, “Almost Everywhere Divergence of Multiple Walsh–Fourier Series”, American Math. Soc., 101:4 (1987) | DOI | MR | Zbl
[21] R. E. A. C. Paley, “A Remarkable Series of Orthogonal Functions. I”, Proc. London Math. Soc. (2), 34 (1932), 241–279 | DOI | MR | Zbl
[22] J. L. Walsh, “A Closed Set of Orthogonal Functions”, Amer. J. Math., 55 (1923), 5–24 | DOI | MR | Zbl
[23] N. N. Luzin, “On the Main Theorem of Integral Calculus”, Mat. Sb., 28:2 (1912), 266–294 (in Russian) | MR | Zbl
[24] D. E. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Mat. Sb., 11(53):1–2 (1942), 67–96 | MR | Zbl
[25] M. G. Grigorian, “On Some Properties of Orthogonal Systems”, Izv. Ross. Akad. Nauk. Ser. Mat., 57:5 (1993), 75—105 | MR