On the uniform convergence of double Furier--Walsh series
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 20-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a universal function $U\in L^1[0,1)^2$ which with respect to the double Walsh system has universal property in the sense of modification, is constructed.
Keywords: universal function, uniformly convergence, Furier–Walsh series.
@article{UZERU_2020_54_1_a2,
     author = {M. G. Grigoryan and A. L. Ghazaryan and G. G. Kazaryan},
     title = {On the uniform convergence of double {Furier--Walsh} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--28},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - A. L. Ghazaryan
AU  - G. G. Kazaryan
TI  - On the uniform convergence of double Furier--Walsh series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2020
SP  - 20
EP  - 28
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/
LA  - en
ID  - UZERU_2020_54_1_a2
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A A. L. Ghazaryan
%A G. G. Kazaryan
%T On the uniform convergence of double Furier--Walsh series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2020
%P 20-28
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/
%G en
%F UZERU_2020_54_1_a2
M. G. Grigoryan; A. L. Ghazaryan; G. G. Kazaryan. On the uniform convergence of double Furier--Walsh series. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 54 (2020) no. 1, pp. 20-28. http://geodesic.mathdoc.fr/item/UZERU_2020_54_1_a2/

[1] G. D. Birkhoff, “Démonstration d'un théoreme elementaire sur les fonctions entiéres”, C. R. Acad. Sci. Paris, 189 (1929), 473–475, 693–696 | Zbl

[2] G. R. MacLane, “Sequences of Derivatives and Normal Families”, J. Anal. Math., 2 (1952), 72–87 | DOI | MR | Zbl

[3] J. Marcinkiewicz, “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | Zbl

[4] K. G. Grosse-Erdmann, “Holomorphe Monster und Universelle Funktionen”, Mitt. Math. Sem. Giessen, 176 (1987), 1–84 | MR

[5] M. G. Grigorian, “On the Universal and Strong Property Related to Fourier-Walsh Series”, Banach J. of Math. Anal., 11:3 (2017), 698–712 | MR

[6] M. G. Grigorian, A. A. Sargsyan, “On the Universal Function for the Class $L^p[0;1]; p\in(0,1)$”, Journal of Func. Anal., 27:8 (2016), 3111–3133 | MR

[7] M. G. Grigorian, L. N.Galoyan, “On the Universal Functions”, Journal of Approximation Theory, 225 (2018), 191–208 | MR

[8] M. G. Grigorian, K. A. Navasardyan, “Universal Functions in Correction Problems Guaranteeing the Convergence of Fourier-Walsh Series”, Izv. RAN. Math., 80:6 (2016), 1057–1083 | MR

[9] M. Grigorian, T. Grigoryan, A. Sargsyan, “On the Universal Function for Weighted Spaces $L^p_\mu[0;1]; p\geq 1$”, Banach J. of Math. Anal., 12:1 (2018), 104–125 | MR

[10] M. Grigorian, A. A. Sargsyan, “The Structure of Universal Functions for $L^p[0;1]$-spaces, $p \in(0,1)$”, Mathematics, 209:1 (2018), 35–55 | MR

[11] M. G. Grigorian, L. N.Galoyan, “On Fourier Series That are Universal Modulo Signs”, Studia Math., 249:2 (2019), 215–231 | MR

[12] M. G. Grigorian, “O Functions Universal with Respect to the Classical Systems”, Adv. Oper. Theory, 5 (2020), 11–32 | DOI | MR

[13] M. Grigorian, “The Structure of Universal Functions for $L^p[0;1]$-spaces, $p \in(0,1)$”, Mathematics, 211:6 (2020), 32–58

[14] L. Carleson, “On Convergence and Growth of Partial Sumas of Fourier Series”, Acta Math., 116:1–2 (1966), 135–157 | DOI | MR | Zbl

[15] M. Riesz, “Sur les functions conjugees”, Math. Zeitshr., 27:2 (1927), 218–244 | MR | Zbl

[16] A. N. Kolmogorov, “Sur les Fonctions Harmoniques Conjuguées et les Séries de Fourier”, Fund. Math., 7 (1925), 23–28 | DOI

[17] C. Fefferman, “On the Divergence of Multiple Fourier Series”, Bull. Amer. Math. Soc., 77:2 (1971), 191–195 | MR | Zbl

[18] C. Fefferman, “The Multiple Problem for the Ball”, Ann. Math., 94:2 (1971), 330–336 | DOI | MR | Zbl

[19] M. G. Grigorian, “On the Convergence of the Spherical Partial Sums of the Double Fourier Series in the $p; p 2208(0;1)$ Metric”, Math. Zametki, 33:4 (1983) | MR | Zbl

[20] D. C. Harris, “Almost Everywhere Divergence of Multiple Walsh–Fourier Series”, American Math. Soc., 101:4 (1987) | DOI | MR | Zbl

[21] R. E. A. C. Paley, “A Remarkable Series of Orthogonal Functions. I”, Proc. London Math. Soc. (2), 34 (1932), 241–279 | DOI | MR | Zbl

[22] J. L. Walsh, “A Closed Set of Orthogonal Functions”, Amer. J. Math., 55 (1923), 5–24 | DOI | MR | Zbl

[23] N. N. Luzin, “On the Main Theorem of Integral Calculus”, Mat. Sb., 28:2 (1912), 266–294 (in Russian) | MR | Zbl

[24] D. E. Menchoff, “Sur la convergence uniforme des séries de Fourier”, Mat. Sb., 11(53):1–2 (1942), 67–96 | MR | Zbl

[25] M. G. Grigorian, “On Some Properties of Orthogonal Systems”, Izv. Ross. Akad. Nauk. Ser. Mat., 57:5 (1993), 75—105 | MR