Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2019_53_3_a8, author = {A. Y. Mamasakhlisow and Y. Sh. Mamasakhlisov}, title = {The conductivity of the monolayer of complexes of {DNA} with quantum dots in the presence of intercalating ligands}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {203--207}, publisher = {mathdoc}, volume = {53}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a8/} }
TY - JOUR AU - A. Y. Mamasakhlisow AU - Y. Sh. Mamasakhlisov TI - The conductivity of the monolayer of complexes of DNA with quantum dots in the presence of intercalating ligands JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 203 EP - 207 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a8/ LA - en ID - UZERU_2019_53_3_a8 ER -
%0 Journal Article %A A. Y. Mamasakhlisow %A Y. Sh. Mamasakhlisov %T The conductivity of the monolayer of complexes of DNA with quantum dots in the presence of intercalating ligands %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 203-207 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a8/ %G en %F UZERU_2019_53_3_a8
A. Y. Mamasakhlisow; Y. Sh. Mamasakhlisov. The conductivity of the monolayer of complexes of DNA with quantum dots in the presence of intercalating ligands. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 203-207. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a8/
[1] D. Ivnitski, I. Abdel-Hamid, P. Atanesov, E. Wilkins, “Biosensors for Detection of Pathogenic Bacteria”, Biosensors and Bioelectronics, 14 (1999), 599–624 | DOI
[2] Y. J. Li, M. J. Ma, J.-J. Zhu, “Dual-signal Amplification Strategy for Ultrasensitive Photoelectrochemical Immunosensing of $\alpha$-Fetoprotein”, Anal. Chem., 84 (2012), 10492–10499 | DOI
[3] G. L. Wang, J. J. Xu, H. Y. Chen, S. Z. Fu, “Label-free Photoelectrochemical Immunoassay for $\alpha$-Fetoprotein Detection Based on $\mathrm{TiO}_2/\mathrm{CdS}$ Hybrid”, Biosens. Bioelectron., 25 (2009), 791–796 | DOI
[4] G. L. Wang, P. P. Yu, J. J. Xu, H. Y. Chen, “A Label-free Photoelectrochemical Immunosensor Based on Water-soluble $\mathrm{CdS}$ Quantum Dots”, J. Phys. Chem. C, 113 (2009), 11142–11148 | DOI
[5] X. R. Zhang, Y. Q. Zhao, H. R. Zhou, B. Qu, “A New Strategy for Photoelectrochemical DNA Biosensor Using Chemiluminescence Reaction as Light Source”, Biosens. Bioelectron., 26 (2011), 2737–2741 | DOI
[6] J. H. Watterson, P. A. E. Piunno, C. C. Wust, U. J. Krull, “Effects of Oligonucleotide Immobilization Density on Selectivity of Quantitative Transduction of Hybridization of Immobilized DNA”, Langmuir, 16 (2000), 4984–4992 | DOI
[7] G. Ananyan, A. Avetisyan, L. Aloyan, Ye. Dalyan, “The Stability of DNA-porphyrin Complexes in the Presence of Mn(II) Ions”, Biophys. Chem., 156 (2011), 96–101 | DOI
[8] I. Willner, F. Patolsky, J. Wasserman, Angew. Chem. Int. Ed., 40 (2001), 1861 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[9] M. A. O’Neill, J. K. Barton, “DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains”, J Am. Chem. Soc., 126 (2004), 11471–11483 | DOI
[10] D. Baş, I. H. Boyaci, “Photoelectrochemical Competitive DNA Hybridization Assay Using Semiconductor Quantum Dot Conjugated Oligonucleotides”, Anal. Bioanal. Chem., 400 (2004), 703–707 | DOI
[11] Sh. A. Tonoyan, A. A. Hakobyan, A. K. Andreassian, V. F. Morozov, Y. Sh. Mamasakhlisov, “Sensitivity of DNA Sensors in the Presence of Charged Ligands”, J. Contemp. Phys., 53 (2018), 179–186 | DOI
[12] L. Xiang, J. L. Palma, C. Bruot, V. Mujica, M. A. Ratner, N. Tao, Nature Chemistry, 2015, 221–226 | DOI