Degenerate first order differential-operator equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary value problem for degenerate first order differential-operator equation $Lu\equiv t^{\alpha}u'-Pu=f, ~u(0)-\mu u(b)=0,$ where $t\in(0,b), \alpha\geq 0$, $P:H\rightarrow H$ is linear operator in separable Hilbert space $H, f\in L_{2,\beta}((0,b),H),~\mu\in\mathbb{C}$. We prove that under some conditions on the operator $P$ and number $\mu$ boundary value problem has unique generalized solution $u\in L_{2,\beta}((0,b),H)$ when $2\alpha+\beta1$, $\beta\geq 0$ and for any $f\in L_{2,\beta}((0,b),H)$.
Keywords: linear boundary value problems, spectral theory of linear operators.
@article{UZERU_2019_53_3_a3,
     author = {L. P. Tepoyan},
     title = {Degenerate first order differential-operator equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/}
}
TY  - JOUR
AU  - L. P. Tepoyan
TI  - Degenerate first order differential-operator equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 163
EP  - 169
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/
LA  - en
ID  - UZERU_2019_53_3_a3
ER  - 
%0 Journal Article
%A L. P. Tepoyan
%T Degenerate first order differential-operator equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 163-169
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/
%G en
%F UZERU_2019_53_3_a3
L. P. Tepoyan. Degenerate first order differential-operator equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/