Degenerate first order differential-operator equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary value problem for degenerate first order differential-operator equation $Lu\equiv t^{\alpha}u'-Pu=f, ~u(0)-\mu u(b)=0,$ where $t\in(0,b), \alpha\geq 0$, $P:H\rightarrow H$ is linear operator in separable Hilbert space $H, f\in L_{2,\beta}((0,b),H),~\mu\in\mathbb{C}$. We prove that under some conditions on the operator $P$ and number $\mu$ boundary value problem has unique generalized solution $u\in L_{2,\beta}((0,b),H)$ when $2\alpha+\beta1$, $\beta\geq 0$ and for any $f\in L_{2,\beta}((0,b),H)$.
Keywords: linear boundary value problems, spectral theory of linear operators.
@article{UZERU_2019_53_3_a3,
     author = {L. P. Tepoyan},
     title = {Degenerate first order differential-operator equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/}
}
TY  - JOUR
AU  - L. P. Tepoyan
TI  - Degenerate first order differential-operator equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 163
EP  - 169
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/
LA  - en
ID  - UZERU_2019_53_3_a3
ER  - 
%0 Journal Article
%A L. P. Tepoyan
%T Degenerate first order differential-operator equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 163-169
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/
%G en
%F UZERU_2019_53_3_a3
L. P. Tepoyan. Degenerate first order differential-operator equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/

[1] V. P. Glushko, “Degenerate Linear Differential Equations. I”, Differential Equations, 4:9 (1968), 1584–1597 (in Russian) | MR | Zbl

[2] A. A. Dezin, “On the Operators of the Form $\frac{d}{dt}-A$”, Reports of the AN SSSR, 164:5 (1965), 963–966 (in Russian) | MR | Zbl

[3] A. A. Dezin, “Degenerate Operator Equations”, Mathematical Notes of the Academy of Sciences of the USSR, 43:3 (1982), 287–298 | MR | Zbl

[4] A. A. Dezin, Partial Differential Equations. An Introduction to a General Theory of Linear Boundary Value Problems, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl

[5] V. V. Kornienko, “On the Spectrum of Degenerate Operator Equations”, Mathematical Notes, 68:5 (2000), 576–587 | DOI | MR | Zbl

[6] S. G. Krein, Linear Differential Equations in Banah Space, Nauka, M., 1967, 464 pp. (in Russian) | MR

[7] M. A. Neimark, Linear Differential Operators, Nauka, M., 1969 (in Russian) | MR

[8] L. P. Tepoyan, “Degenerate Fourth-Order Differential-Operator Equations”, Differential Equations, 23:8 (1987), 1366–1376 (in Russian) | MR | Zbl

[9] L. P. Tepoyan, “Degenerate Differential-Operator Equations on Infinite Intervals”, J. of Mathematical Sciences, 189:1 (2013), 164–172 | DOI | MR | Zbl

[10] L. P. Tepoyan, “Degenerate Differential-Operator Equations of Higher Order and Arbitrary Weight”, Asian-European Journal of Mathematics (AEJM), 5:2 (2012), 1250030-1–1250030-8 | DOI | MR

[11] N. M. Yataev, “Unique solvability of certain boundary-value problems for degenerate third order operator equations”, Math. Notes, 54:1 (1993), 754–763 | DOI | MR | Zbl