Degenerate first order differential-operator equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider boundary value problem for degenerate first order differential-operator equation $Lu\equiv t^{\alpha}u'-Pu=f, ~u(0)-\mu u(b)=0,$ where $t\in(0,b), \alpha\geq 0$, $P:H\rightarrow H$ is linear operator in separable Hilbert space $H, f\in L_{2,\beta}((0,b),H),~\mu\in\mathbb{C}$. We prove that under some conditions on the operator $P$ and number $\mu$ boundary value problem has unique generalized solution $u\in L_{2,\beta}((0,b),H)$ when $2\alpha+\beta1$, $\beta\geq 0$ and for any $f\in L_{2,\beta}((0,b),H)$.
Keywords:
linear boundary value problems, spectral theory of linear operators.
@article{UZERU_2019_53_3_a3,
author = {L. P. Tepoyan},
title = {Degenerate first order differential-operator equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {163--169},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/}
}
TY - JOUR AU - L. P. Tepoyan TI - Degenerate first order differential-operator equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 163 EP - 169 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/ LA - en ID - UZERU_2019_53_3_a3 ER -
%0 Journal Article %A L. P. Tepoyan %T Degenerate first order differential-operator equations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 163-169 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/ %G en %F UZERU_2019_53_3_a3
L. P. Tepoyan. Degenerate first order differential-operator equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 3, pp. 163-169. http://geodesic.mathdoc.fr/item/UZERU_2019_53_3_a3/