Invariant solution of the Dirac equation in the crossed electric and magnetic fields $(H > E)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 138-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article exact analytical and invariant solutions for both spinless and half-spin relativistic charged particles in crossed constant electric and magnetic fields, when $H > E$ have been found. It is shown that in both cases the problem reduces to that of quantum harmonic oscillator.
Keywords: crossed electric and magnetic fields
Mots-clés : Invariant solution, Klein–Gordon equation, Dirac equation.
@article{UZERU_2019_53_2_a8,
     author = {R. G. Petrosyan and {\CYRM}. {\CYRA}. Davtyan},
     title = {Invariant solution of the {Dirac} equation in the crossed electric and magnetic fields $(H > E)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {138--141},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a8/}
}
TY  - JOUR
AU  - R. G. Petrosyan
AU  - М. А. Davtyan
TI  - Invariant solution of the Dirac equation in the crossed electric and magnetic fields $(H > E)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 138
EP  - 141
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a8/
LA  - en
ID  - UZERU_2019_53_2_a8
ER  - 
%0 Journal Article
%A R. G. Petrosyan
%A М. А. Davtyan
%T Invariant solution of the Dirac equation in the crossed electric and magnetic fields $(H > E)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 138-141
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a8/
%G en
%F UZERU_2019_53_2_a8
R. G. Petrosyan; М. А. Davtyan. Invariant solution of the Dirac equation in the crossed electric and magnetic fields $(H > E)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 138-141. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a8/

[1] W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie”, Zeitschrift für Physik, 40:1–2 (2005), 117–133 | DOI | Zbl

[2] D. M. Wolkow, “Über eine Klasse von Lösungen der Diracschen Gleichung”, Z. Phys., 94:3–4 (1935), 250–260 | Zbl

[3] V. Canuto, C. Chiuderi, “Chiuderi Solution of the Dirac Equation in Orthogonal Electric and Magnetic Fields”, Lettere al Nuovo Cimento, 2:6 (1969–1970), 223–227

[4] L. Lam, “Dirac Electron in Orthogonal Electric and Magnetic Fields”, Lettere al Nuovo Cimento, 3:9 (1969–1970), 292–294

[5] V. B. Berestetskii, L. P. Pitaevskii, E. M. Lifshitz, Quantum Electrodynamics, v. 4, 2nd ed., Butterworth–Heinemann, 1982

[6] I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Sums, Series and Products, Nauka, M., 1971, 1108 pp. (in Russian)

[7] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, v. 2, Pergamon, Oxford, 1959