Real-time sensing the glucose concentration by quadratic-shaped microwave sensor
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 132-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study we present a microwave sensor based on the quadratic-shape designed for detecting glucose concentration in aqueous solutions by using a microwave near-field electromagnetic interaction technique. We derived linear relationship between microwave $\mathrm{S}_{11}$ reflection coefficient of our suggested system and concentration of glucose in solution. Due to that linear relationship we could determine the glucose concentration in the $0$$250\,mg/dL$ concentration range at an operating frequency near $3.6\, GHz$. The measured minimum detectable signal was $0.0044\,dB/(mg/dL)$ and the measured minimum detectable concentration was $6.8\, mg/dL$. These results suggest that our proposed system has a high accuracy for non-contact glucose monitoring and has good basis for the development of a non-invasive glucometer.
Keywords: Quadratic resonator, microwave sensor
Mots-clés : glucose concentration.
@article{UZERU_2019_53_2_a7,
     author = {B. A. Hovhannisyan and D. S. Hambaryan and L. A. Odabashyan and A. Zh. Babajanyan},
     title = {Real-time sensing the glucose concentration by quadratic-shaped microwave sensor},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {132--137},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a7/}
}
TY  - JOUR
AU  - B. A. Hovhannisyan
AU  - D. S. Hambaryan
AU  - L. A. Odabashyan
AU  - A. Zh. Babajanyan
TI  - Real-time sensing the glucose concentration by quadratic-shaped microwave sensor
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 132
EP  - 137
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a7/
LA  - en
ID  - UZERU_2019_53_2_a7
ER  - 
%0 Journal Article
%A B. A. Hovhannisyan
%A D. S. Hambaryan
%A L. A. Odabashyan
%A A. Zh. Babajanyan
%T Real-time sensing the glucose concentration by quadratic-shaped microwave sensor
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 132-137
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a7/
%G en
%F UZERU_2019_53_2_a7
B. A. Hovhannisyan; D. S. Hambaryan; L. A. Odabashyan; A. Zh. Babajanyan. Real-time sensing the glucose concentration by quadratic-shaped microwave sensor. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 132-137. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a7/

[1] E. Young, “Non-invasive Glucose Monitoring for Diabetes: Five Strategies under Development”, The Pharmaceutical Journal, 299:7906 (2017)

[2] M. Cusick et al., “Associations of Mortality and Diabetes Complications in Patients with Type 1 and Type 2 Diabetes”, Diabetes Care, 28:27 (2005), 617–625

[3] C. D. Geddes, J. R. Lakowicz (Eds.), Topics in Fluorescence Spectroscopy: Glucose Sensing, Springer Science and Business Media Inc., NY, USA, 2006

[4] B. Choudhry, R. Shinar, J. Shinar, “Glucose Biosensors Based on Organic Light-Emitting Devices Structurally”, J. Appl. Phys., 96:5 (2004), 2949–2954

[5] E.-J. Park, J. Werner, J. Beebe, S. Chan, N. B. Smith, “Non-invasive Ultrasonic Glucose Sensing with Large Pigs (200 Pounds) Using a Lightweight Cymbal Transducer Array and Biosensors”, J. Diabetes Sci. Technol., 3:3 (2009), 517–523

[6] A. Heller, “Implanted Electrochemical Glucose Sensors for the Management of Diabetes”, Annual Review of Biomedical Engineering, 1 (1999), 153–175

[7] J. S. Hong, M. J. Lancaster, D. Jedamzik, R. B. Greed, IEEE MTT-S, Baltimore, 1998, 367 pp.

[8] F. A. Miranda, G. Subramanyam, F. W. van Keuls, R. R. Romanofsky, J. D. Warner, C. H. Mueller, “Design and Development of Ferroelectric Tunable Microwave Components for Kuand K-band Satellite Communication Systems”, IEEE Trans. Microwave Theory Tech., 48 (2000), 1181

[9] M. E. Daly, C. Vale, M. Walker, A. Littlefield, K. G. Alberti, J. C. Mathers, “Acute Effects on Insulin Sensitivity and Diurnal Metabolic Profiles of a High-Sucrose Compared with a High-Starch Diet”, The American Journal of Clinical Nutrition, 67 (1998), 1186–1196

[10] H. A. Parsamyan, A. Zh. Babajanyan, Sh. Kh. Arakelyan, K. Lee, “Determination of Glucose Concentration in Aqueous Solution by Using Modified Hilbert Shaped Microwave Metamaterial Sensor”, Proceedings of the YSU. Physics and Mathematics Sciences, 52:2 (2018), 144–148

[11] H. Melikyan et al., “Non-Invasive $in-vitro$ Sensing of d-Glucose in Pig Blood”, Med. Eng. Phys., 34:3 (2012), 299–304

[12] D. Lide, Handbook of Chemistry and Physics, CRC Press, New York, 2004

[13] S. Havriliak, S. Negami, “A complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers”, Polymer, 8 (1967), 161–210

[14] K. S. Cole, R. H. Cole, “Dispersion and Absorption in Dielectrics. I - Alternating Current Characteristics”, Journal of Chemical Physics, 9:4 (1941), 341–351