Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 127-131
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we investigate a class of equation systems with determinable partial (not everywhere defined) Boolean functions. We found the asymptotic estimate of the number of solutions of equation systems in the “typical” case (for the whole range of changes in the number of equations).
Keywords:
Boolean equations, solution of equation, partial Boolean functions.
@article{UZERU_2019_53_2_a6,
author = {E. V. Yeghiazaryan},
title = {Asymptotic estimates of the number of solutions of systems of equations with determinable partial {Boolean} functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {127--131},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/}
}
TY - JOUR AU - E. V. Yeghiazaryan TI - Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 127 EP - 131 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/ LA - en ID - UZERU_2019_53_2_a6 ER -
%0 Journal Article %A E. V. Yeghiazaryan %T Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 127-131 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/ %G en %F UZERU_2019_53_2_a6
E. V. Yeghiazaryan. Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 127-131. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/