Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2019_53_2_a6, author = {E. V. Yeghiazaryan}, title = {Asymptotic estimates of the number of solutions of systems of equations with determinable partial {Boolean} functions}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {127--131}, publisher = {mathdoc}, volume = {53}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/} }
TY - JOUR AU - E. V. Yeghiazaryan TI - Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2019 SP - 127 EP - 131 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/ LA - en ID - UZERU_2019_53_2_a6 ER -
%0 Journal Article %A E. V. Yeghiazaryan %T Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2019 %P 127-131 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/ %G en %F UZERU_2019_53_2_a6
E. V. Yeghiazaryan. Asymptotic estimates of the number of solutions of systems of equations with determinable partial Boolean functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 2, pp. 127-131. http://geodesic.mathdoc.fr/item/UZERU_2019_53_2_a6/
[1] M. Geri, D. Johnson, Computers and Intractability, Mir, M., 1982 (in Russian) | MR
[2] E. V. Yeghiazaryan, “Metric Properties of Systems of Boolean Equations”, DAN Armenian SSR, 72:2 (1981) (in Russian) | MR
[3] E. V. Yeghiazaryan, “Estimates Related to the Number of Solutions of Boolean Equations”, Tasks of Cybernetics: Combinatorial Analysis and Graph Theory, M., 1981, 124–130 (in Russian)
[4] Ed. V. Yeghiazaryan, G. P. Tonoyan, “An Asymptotic Estimate of the Number of Solutions of a Special System of Boolean Equations”, Proceedings of the YSU. Physical and Mathematial Scineces, 2016, no. 1, 35–39
[5] W. Feller, An Introduction to Probability Theory and its Applications, v. 1, John Wiley Sons, New York, 1968 | MR | Zbl