Short-range disorder in polyelectrolytes: replicas and constrained annealing comparison
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 47-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general formalism describing polyelectrolyte behavior in presence of sequence disorder is presented. The Edwards and Poisson–Boltzmann equations are obtained. The possible effect of the boundary conditions is discussed. Comparison between replica and constrained annealing approaches is made.
Keywords: Polyelectrolyte, DNA, replicas, constrained annealing.
Mots-clés : RNA
@article{UZERU_2019_53_1_a6,
     author = {A. Y. Mamasakhlisow},
     title = {Short-range disorder in polyelectrolytes: replicas and constrained annealing comparison},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {47--52},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a6/}
}
TY  - JOUR
AU  - A. Y. Mamasakhlisow
TI  - Short-range disorder in polyelectrolytes: replicas and constrained annealing comparison
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 47
EP  - 52
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a6/
LA  - en
ID  - UZERU_2019_53_1_a6
ER  - 
%0 Journal Article
%A A. Y. Mamasakhlisow
%T Short-range disorder in polyelectrolytes: replicas and constrained annealing comparison
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 47-52
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a6/
%G en
%F UZERU_2019_53_1_a6
A. Y. Mamasakhlisow. Short-range disorder in polyelectrolytes: replicas and constrained annealing comparison. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 47-52. http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a6/

[1] S. Forster, M. Schmidt, “Polyelectrolytes in Solution”, Physical Properties of Polymers, 2005, 51–133

[2] A. V. Dobrynin, M. Rubinstein, “Theory of Polyelectrolytes in Solutions and at Surfaces”, Prog. Polym. Sci., 30:11 (2005), 1049–1118 | DOI

[3] A. R. Khokhlov, “On the Collapse of Weakly Charged Polyelectrolytes”, J. Phys. A: Math. Gen., 13:3 (1980), 979–987 | DOI

[4] M. Muthukumar, “Adsorption of a Polyelectrolyte Chain to a Charged Surface”, J. Chem. Phys., 86 (1987), 7230—7235 | DOI

[5] V. Yu. Borue, I. Ya. Erukhimovich, “A Statistical Theory of Weakly Charged Polyelectrolytes: Fluctuations, Equation of State and Microphase Separation”, Macromolecules, 21:11 (1988), 3240–3249 | DOI

[6] J. F. Marko, Y. Rabin, “Microphase Separation in Charged Diblock Copolymers: The Weak Segregation Limit”, Macromolecules, 24:8 (1991), 2134–2136 | DOI

[7] M. Muthukumar, “Phase Diagram of Polyelectrolyte Solutions: Weak Polymer Effect”, Macromolecules, 35:24 (2002), 9142–9145 | DOI

[8] C. Holm, J. F. Joanny, K. Kremer, R. R. Netz, P. Reineker, C. Seidel, T. A. Vilgis, R. G. Winkler, “Polyelectrolyte Theory”, Adv. Polym. Sci., 166 (2004), 67–111 | DOI

[9] R. Podgornik, “Electrostatic Correlation Forces between Surfaces with Surface Specific Ionic Interactions”, J. Chem. Phys., 91:9 (1989), 5840–5849 | DOI

[10] R. Podgornik, “An Analytic Treatment of the First-Order Correction to the Poisson–Boltzmann Interaction Free Energy in the Case of Counterion-Only Coulomb Fluid”, J. Phys. A: Math. Gen., 23 (1990), 275–284 | DOI | Zbl

[11] A. G. Moreira, R. R. Netz, “Counterions at Charge-Modulated Substrates”, Europhys. Lett., 57:6 (2002), 911–917 | DOI

[12] D. B. Lukatsky, S. A. Safran, “Universal Reduction of Pressure between Charged Surfaces by Long-Wavelength Surface Charge Modulation”, Europhys. Lett., 60:4 (2002), 629–635 | DOI

[13] A. Naji, R. Pkodgorni, “Quenched Charge Disorder and Coulomb Interactions”, Phys. Rev. E, 72 (2005), 041402, 11 pp. | DOI

[14] R. Podgornik, A. Naji, “Electrostatic Disorder-Induced Interactions in Inhomogeneous Dielectrics”, Europhys. Lett., 74:4 (2006), 712–718 | DOI | MR

[15] C. Fleck, R. R. Netz, “Counterions at Disordered Charged Planar Surfaces”, Europhys. Lett., 70:3 (2005), 341–347 | DOI

[16] K. Nishida, K. Kaji, T. Kanaya, “Improved Phase Diagram of Polyelectrolyte Solutions”, J. Chem. Phys., 115:17 (2001), 8217–8220 | DOI

[17] J. M. Victor, J. B. Imbert, “Collapse of an Alternating Polyampholyte: Evidence for Tricriticality in 2 and 3 Dimensions”, Europhys. Lett., 24:3 (1993), 189–195 | DOI

[18] C. D. Sfatos, E. I. Shakhnovich, “Statistical Mechanics of Random Heteropolymers”, Physics Reports, 288:1–6 (1997), 77–108 | DOI

[19] Y. Sh. Mamasakhlisov, Sh. Hayryan, V. F. Morozov, C.-K. Hu, “RNA Folding in the Presence of Counterions”, Phys. Rev. E, 75 (2007), 061907, 9 pp. | DOI

[20] A. Siber, R. Podgornik, “Nonspecific Iinteractions in Spontaneous Assembly of Empty Versus Functional Single-Stranded RNA Viruses”, Phys. Rev. E, 78 (2008), 051915, 9 pp. | DOI

[21] K. Binder, A. P. Young, “Spin Glasses: Experimental Facts, Theoretical Concepts and Open Questions”, Rev. Mod. Phys., 58:4 (1986), 801–976 | DOI

[22] M. Serva, G. Paladin, “Gibbs Thermodynamic Potentials for Disordered Systems”, Phys. Rev. Lett. 1993, 70:2, 105–108 | DOI | MR