A uniqueness theorem for a nonlinear singular integral equation arising in $p$-adic string theory
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a singular nonlinear integral equation on the real line that appear in $p$-adic string theory. A uniqueness theorem for this equation in certain class of odd functions is proved. At the end of the paper we give examples, satisfying the conditions of the formulated theorem.
Keywords: Nonlinearity, singularity, bounded solution, $p$-adic string theory.
@article{UZERU_2019_53_1_a2,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {A uniqueness theorem for a  nonlinear singular integral equation arising in $p$-adic string theory},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a2/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - A uniqueness theorem for a  nonlinear singular integral equation arising in $p$-adic string theory
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2019
SP  - 17
EP  - 22
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a2/
LA  - en
ID  - UZERU_2019_53_1_a2
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T A uniqueness theorem for a  nonlinear singular integral equation arising in $p$-adic string theory
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2019
%P 17-22
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a2/
%G en
%F UZERU_2019_53_1_a2
A. Kh. Khachatryan; Kh. A. Khachatryan. A uniqueness theorem for a  nonlinear singular integral equation arising in $p$-adic string theory. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 53 (2019) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/UZERU_2019_53_1_a2/

[1] I. V. Volovich, “$p$-Adic String”, Classical Quantum Gravity, 4:4 (1987), L83–L87 | DOI | MR

[2] L. Brekke, P. G. O. Freund, M. Olson, Ed. Witten, “Non-Archimedean String Dynamics”, Nucl. Phys. B, 302:3 (1988), 365–402 | DOI | MR

[3] P. H. Frampton, Ya. Okada, “Effective Scalar Field Theory of $p$-Adic String”, Phys. Rev. D., 37:10 (1989), 3077–3079 | DOI | MR

[4] L. Brekke, P. G. O. Freund, “$p$-Adic Numbers in Physics”, Physics Reports, 233:1 (1993), 1–66 | DOI | MR

[5] N. Moeller, M. Schnabl, “Tachyon Condensation in Open-Closed $p$-Adic String Theory”, J. High Energy Phys., 2004:1 (2004), 011, 18 pp. | DOI | MR | Zbl

[6] V. S. Vladimirov, “Nonlinear Equations for $p$-Adic Open, Closed and Open-Closed Strings”, Theoret. and Math. Phys., 149:3 (2006), 1604–1616 | DOI | MR | Zbl

[7] Kh. A. Khachatryan, S. M. Andriyan, A. A. Sisakyan, “On the Solvability of a Class of Boundary Value Problems for Systems of the Integral Equations with Power Nonlinearity on the Whole Axis”, Bul. Acad. Scinece Repub. Mold. Mathem., 2018, no. 2, 54–73 (in Russian) | MR

[8] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover Books on Mathematics, Dover Publ., 1999 (in Russian) | MR | Zbl