On a uniqueness theorem for the Franklin system
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that there exist a nontrivial Franklin series and a sequence$M_n$ such that the partial sums$S_{M_n}(x)$ of that series converge to 0 almost everywhere and $\lambda\cdot \mathrm{mes}\left\{x:sup_n\big|S_{M_n}(x)\big|>\lambda\right\}\to 0$ as $\lambda\to+\infty$. This shows that the boundedness assumption of the ratio $M_{n+1} /M_n$, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.
Keywords: majorant of partial sums, Franklin system, uniqueness.
@article{UZERU_2018_52_2_a3,
     author = {K. A. Navasardyan},
     title = {On a uniqueness theorem for the {Franklin} system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/}
}
TY  - JOUR
AU  - K. A. Navasardyan
TI  - On a uniqueness theorem for the Franklin system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 93
EP  - 100
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/
LA  - en
ID  - UZERU_2018_52_2_a3
ER  - 
%0 Journal Article
%A K. A. Navasardyan
%T On a uniqueness theorem for the Franklin system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 93-100
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/
%G en
%F UZERU_2018_52_2_a3
K. A. Navasardyan. On a uniqueness theorem for the Franklin system. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100. http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/

[1] Ph. Franklin, “A Set of Continuous Orthogonal Functions”, Math. Ann., 100 (1928), 522–528 | DOI | MR

[2] Z. Ciesielski, “Properties of the Orthonormal Franklin System”, Studia Math., 23 (1963), 141–157 | DOI | MR | Zbl

[3] Z. Ciesielski, “Properties of the Orthonormal Franklin System. II”, Studia Math., 27 (1966), 289–323 | DOI | MR | Zbl

[4] G. G. Gevorkyan, “Uniqueness of Franklin Series”, Math. Zametki, 46:2 (1989), 51–58 (in Russian)

[5] G. G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Math. Zametki, 101:2 (2017), 199–210 (in Russian) | DOI | MR | Zbl

[6] K. A. Navasardyan, “Uniqueness Theorems for Multiple Franklin Series”, Proceedings of the YSU. Physical and Mathematical Sciences, 51:3 (2017), 241–249 | MR | Zbl

[7] G. G. Gevorkyan, M. P. Poghosyan, “On Recovering of Coefficients of a Franklin Series with the “Good” Majorant of Partial Sums”, Izv. NAN Armenii. Ser. Math., 52:5 (2017), 254–263

[8] G. G. Gevorkyan, “Majorants and Uniqueness of Series in the Franklin System”, Math. Zametki, 59:4 (1996), 521–545 (in Russian) | DOI | MR | Zbl

[9] G.G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Math. Zametki, 98:5 (2015), 786–789 (in Russian) | DOI | MR | Zbl

[10] M. P. Poghosyan, “Uniqueness of Series by General Franklin Systems”, Izv. NAN Armenii. Ser. Math., 35:4 (2000), 77–83 (in Russian) | MR | Zbl

[11] G. G. Gevorkyan, K. A. Navasardyan, “On Haar Series of A–Integrable Functions”, Izv. NAN Armenii. Matematika, 52:3 (2017), 30–45 (in Russian) | MR | Zbl

[12] V. V. Kostin, “Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions”, Math. Zametki, 73:5 (2003), 704–723 (in Russian) | DOI | MR | Zbl

[13] V. V. Kostin, “Generalization of the Balashov Theorem on Subseries of the Fourier–Haar Series”, Math. Zametki, 76:5 (2004), 740–747 (in Russian) | DOI | MR | Zbl

[14] G. G. Gevorkyan, K. A. Navasardyan, “On a Summation Method for Series with Respect to Vilenkin and Haar Systems”, Reports NAS of Armenia, 117:1 (2017), 20–25 (in Russian) | MR

[15] G. G. Gevorkyan, “On Absolute Convergence of Series by General Franklin System”, Izv. NAN Armenii. Matematika, 49:2 (2014), 3–24 (in Russian) | MR | Zbl