On a uniqueness theorem for the Franklin system
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that there exist a nontrivial Franklin series and a sequence$M_n$ such that the partial sums$S_{M_n}(x)$ of that series converge to 0 almost everywhere and $\lambda\cdot \mathrm{mes}\left\{x:sup_n\big|S_{M_n}(x)\big|>\lambda\right\}\to 0$ as $\lambda\to+\infty$. This shows that the boundedness assumption of the ratio $M_{n+1} /M_n$, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.
Keywords:
majorant of partial sums, Franklin system, uniqueness.
@article{UZERU_2018_52_2_a3,
author = {K. A. Navasardyan},
title = {On a uniqueness theorem for the {Franklin} system},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {93--100},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/}
}
TY - JOUR AU - K. A. Navasardyan TI - On a uniqueness theorem for the Franklin system JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 93 EP - 100 VL - 52 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/ LA - en ID - UZERU_2018_52_2_a3 ER -
K. A. Navasardyan. On a uniqueness theorem for the Franklin system. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100. http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/