On a uniqueness theorem for the Franklin system
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that there exist a nontrivial Franklin series and a sequence$M_n$ such that the partial sums$S_{M_n}(x)$ of that series converge to 0 almost everywhere and $\lambda\cdot \mathrm{mes}\left\{x:sup_n\big|S_{M_n}(x)\big|>\lambda\right\}\to 0$ as $\lambda\to+\infty$. This shows that the boundedness assumption of the ratio $M_{n+1} /M_n$, used for the proofs of uniqueness theorems in earlier papers, can not be omitted.
Keywords: majorant of partial sums, Franklin system, uniqueness.
@article{UZERU_2018_52_2_a3,
     author = {K. A. Navasardyan},
     title = {On a uniqueness theorem for the {Franklin} system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/}
}
TY  - JOUR
AU  - K. A. Navasardyan
TI  - On a uniqueness theorem for the Franklin system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 93
EP  - 100
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/
LA  - en
ID  - UZERU_2018_52_2_a3
ER  - 
%0 Journal Article
%A K. A. Navasardyan
%T On a uniqueness theorem for the Franklin system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 93-100
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/
%G en
%F UZERU_2018_52_2_a3
K. A. Navasardyan. On a uniqueness theorem for the Franklin system. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 2, pp. 93-100. http://geodesic.mathdoc.fr/item/UZERU_2018_52_2_a3/