Straight calculation of helix–coil transition parameters in heteropolymers
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 47-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main goal of this paper is the investigation of helix–coil transition in heteropolymers by means of straight calculation of partition function, free energy, helicity degree and other characteristics of transition on the bases of generalized model of polypeptide chain. Product of random matrices was applied to solve the problem for the comparison with constrained annealing method in the future.
Keywords: generalized model of polypeptide chain, free energy, average length of helix region.
@article{UZERU_2018_52_1_a7,
     author = {A. V. Asatryan and A. K. Andriasyan and A. A. Hakobyan and Sh. A. Tonoyan and Y. Sh. Mamasakhlisov and V. F. Morozov},
     title = {Straight calculation of helix{\textendash}coil transition parameters in heteropolymers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/}
}
TY  - JOUR
AU  - A. V. Asatryan
AU  - A. K. Andriasyan
AU  - A. A. Hakobyan
AU  - Sh. A. Tonoyan
AU  - Y. Sh. Mamasakhlisov
AU  - V. F. Morozov
TI  - Straight calculation of helix–coil transition parameters in heteropolymers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 47
EP  - 54
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/
LA  - en
ID  - UZERU_2018_52_1_a7
ER  - 
%0 Journal Article
%A A. V. Asatryan
%A A. K. Andriasyan
%A A. A. Hakobyan
%A Sh. A. Tonoyan
%A Y. Sh. Mamasakhlisov
%A V. F. Morozov
%T Straight calculation of helix–coil transition parameters in heteropolymers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 47-54
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/
%G en
%F UZERU_2018_52_1_a7
A. V. Asatryan; A. K. Andriasyan; A. A. Hakobyan; Sh. A. Tonoyan; Y. Sh. Mamasakhlisov; V. F. Morozov. Straight calculation of helix–coil transition parameters in heteropolymers. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/

[1] D. C. Poland, H. A. Scheraga, The Theory of Helix–Coil Transition, Academic Press, NY, 1970

[2] Yu. Grosberg, A. R. Khokhlov, Statistical Physics of Macromolecules, AIP, NY, 1994 | MR

[3] R. Cantor, T. R. Shimmel, Biophysical Chemistry, Freeman, San Francisco, 1980

[4] P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, NY, 1969

[5] R. M. Wartell, A. S. Benight, “Thermal Denaturation of DNA Molecules: a Comparison of Theory with Experiment”, Phys. Rep., 126 (1985), 67 | DOI

[6] A. A. Vedenov et al., “The Helix-Coil Transition in Heterogeneous Double Stranded DNA: Microcanonical Method”, UFN, 105 (1971), 479 (in Russian) | DOI

[7] A. Wada, A. Suyama, “Local Stability of DNA and RNA Secondary Structure and Its Relation to Biological Functions”, Prog. Biophys. Mol. Biol., 47 (1986), 103 | DOI

[8] T. Chalikian, “Hydrophobic Tendencies of Polar Groups as a Major Force in Molecular Recognition”, Biopolymers, 70 (2003), 492 | DOI

[9] T. Garel et al., “A Simple Model for DNA Denaturation”, Europhys. Lett., 55 (2001), 132 | DOI

[10] D. Cule, T. Hwa, “Denaturation of Heterogeneous DNA”, Phys. Rev. Lett., 79 (1997), 2375 | DOI

[11] M. Baiesi et al., “A Simple Model of DNA Denaturation and Mutually Avoiding Walks Statistics”, Eur. Phys. J. B, 29 (2002), 129–134 | DOI

[12] M. Peyrard, “Nonlinear Dynamics and Statistical Physics of DNA”, Nonlinearity, 17 (2004), R1 | DOI | MR

[13] M. Barbi et al., “Thermal Denaturation of a Helicoidal DNA Model”, Phys. Rev. E, 68 (2003), 061909 | DOI

[14] M. Takano et al., “Investigating a Link between All-Atom Model Simulation and the Ising-Based Theory on the Helix–Coil Transition: Equilibrium Statistical Mechanics”, J. Chem. Phys., 116 (2001), 2219 | DOI

[15] V. Munoz, L. Serrano, “Development of the Multiple Sequence Approximation within the AGADIR Model of $\alpha$-Helix Formation: Comparison with Zimm-Bragg and Lifson-Roig Formalisms”, Biopolymers, 41 (1997), 495 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[16] B. H. Zimm et al., “Determination of the Parameters for Helix Formation in poly-$\gamma$-benzyl-$L$-glutamate”, Proc. Natl. Acad. Sci. USA, 45 (1959), 1601 | DOI

[17] B. H. Zimm, J. K. Bragg, “Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains”, J. Chem. Phys., 31 (1959), 526 | DOI

[18] B. H. Zimm, “Theory of “Melting” of the Helical Form in Double Chains of the DNA Type”, J. Chem. Phys., 33 (1960), 1349 | DOI

[19] B. H. Zimm, N. Rice, “The Helix–Coil Transition in Charged Macromolecules”, Mol. Phys., 3 (1960), 391 | DOI

[20] S. Lifson, A. Roig, “On the Theory of Helix–Coil Transition in Polypeptides”, J. Chem. Phys., 34 (1961), 1963 | DOI

[21] S. Lifson, B. H. Zimm, “Simplified Theory of the Helix–Coil Transition in DNA Based on a Grand Partition Function”, Biopolymers, 1 (1963), 15 | DOI

[22] S. Lifson, J. Allegra, “On the Theory of Order-Disorder Transition and Copolymer Structure of DNA”, Biopolymers, 2 (1964), 65 | DOI

[23] V. F. Morozov et al., “Microscopical Approach to the Helix–Coil Transition in DNA”, Physica A, 281 (2000), 51 | DOI

[24] V. F. Morozov et al., “Stacking and Hydrogen Bonding: DNA Cooperativity at Melting”, Biopolymers, 75 (2004), 434 | DOI

[25] A. V. Tsarukyan et al., “Order Parameters of Helix–Coil Transition in Bbiopolymers”, J. Contemp. Phys. (Armenian Ac. Sci.), 41 (2006), 54

[26] Sh. A. Tonoyan et al., “Generalized Model of Polypeptide Chain with Two-Scale Interactions”, J. Contemp. Phys. (Armenian Ac. Sci.), 42 (2007), 309 | DOI

[27] Sh. A. Tonoyan et al., “Helix-Coil Transition of Biopolymers in Solvents Interacting in Competitive and Non-Competitive Ways”, J. Contemp. Phys. (Armenian Ac. Sci.), 45 (2010), 88 | DOI

[28] A. V. Badasyan et al., “The Helix–Coil Transition in Heterogeneous Double Stranded DNA: Microcanonical Method”, J. Chem. Phys., 123 (2005), 194701 | DOI

[29] M. Serva, G. Paladin, “Gibbs Thermodynamic Potentials for Disordered Systems”, Phys. Rev. Lett., 70 (1993), 105 | DOI

[30] Sh. A. Tonoyan, “On the Theory of Helix–Coil Transition in Heterogeneous Biopolymers. Constrained Annealing Method”, J. Contemp. Phys. (Armenian Ac. Sci.), 48 (2013), 236 | DOI