Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2018_52_1_a7, author = {A. V. Asatryan and A. K. Andriasyan and A. A. Hakobyan and Sh. A. Tonoyan and Y. Sh. Mamasakhlisov and V. F. Morozov}, title = {Straight calculation of helix{\textendash}coil transition parameters in heteropolymers}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {47--54}, publisher = {mathdoc}, volume = {52}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/} }
TY - JOUR AU - A. V. Asatryan AU - A. K. Andriasyan AU - A. A. Hakobyan AU - Sh. A. Tonoyan AU - Y. Sh. Mamasakhlisov AU - V. F. Morozov TI - Straight calculation of helix–coil transition parameters in heteropolymers JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2018 SP - 47 EP - 54 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/ LA - en ID - UZERU_2018_52_1_a7 ER -
%0 Journal Article %A A. V. Asatryan %A A. K. Andriasyan %A A. A. Hakobyan %A Sh. A. Tonoyan %A Y. Sh. Mamasakhlisov %A V. F. Morozov %T Straight calculation of helix–coil transition parameters in heteropolymers %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2018 %P 47-54 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/ %G en %F UZERU_2018_52_1_a7
A. V. Asatryan; A. K. Andriasyan; A. A. Hakobyan; Sh. A. Tonoyan; Y. Sh. Mamasakhlisov; V. F. Morozov. Straight calculation of helix–coil transition parameters in heteropolymers. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a7/
[1] D. C. Poland, H. A. Scheraga, The Theory of Helix–Coil Transition, Academic Press, NY, 1970
[2] Yu. Grosberg, A. R. Khokhlov, Statistical Physics of Macromolecules, AIP, NY, 1994 | MR
[3] R. Cantor, T. R. Shimmel, Biophysical Chemistry, Freeman, San Francisco, 1980
[4] P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, NY, 1969
[5] R. M. Wartell, A. S. Benight, “Thermal Denaturation of DNA Molecules: a Comparison of Theory with Experiment”, Phys. Rep., 126 (1985), 67 | DOI
[6] A. A. Vedenov et al., “The Helix-Coil Transition in Heterogeneous Double Stranded DNA: Microcanonical Method”, UFN, 105 (1971), 479 (in Russian) | DOI
[7] A. Wada, A. Suyama, “Local Stability of DNA and RNA Secondary Structure and Its Relation to Biological Functions”, Prog. Biophys. Mol. Biol., 47 (1986), 103 | DOI
[8] T. Chalikian, “Hydrophobic Tendencies of Polar Groups as a Major Force in Molecular Recognition”, Biopolymers, 70 (2003), 492 | DOI
[9] T. Garel et al., “A Simple Model for DNA Denaturation”, Europhys. Lett., 55 (2001), 132 | DOI
[10] D. Cule, T. Hwa, “Denaturation of Heterogeneous DNA”, Phys. Rev. Lett., 79 (1997), 2375 | DOI
[11] M. Baiesi et al., “A Simple Model of DNA Denaturation and Mutually Avoiding Walks Statistics”, Eur. Phys. J. B, 29 (2002), 129–134 | DOI
[12] M. Peyrard, “Nonlinear Dynamics and Statistical Physics of DNA”, Nonlinearity, 17 (2004), R1 | DOI | MR
[13] M. Barbi et al., “Thermal Denaturation of a Helicoidal DNA Model”, Phys. Rev. E, 68 (2003), 061909 | DOI
[14] M. Takano et al., “Investigating a Link between All-Atom Model Simulation and the Ising-Based Theory on the Helix–Coil Transition: Equilibrium Statistical Mechanics”, J. Chem. Phys., 116 (2001), 2219 | DOI
[15] V. Munoz, L. Serrano, “Development of the Multiple Sequence Approximation within the AGADIR Model of $\alpha$-Helix Formation: Comparison with Zimm-Bragg and Lifson-Roig Formalisms”, Biopolymers, 41 (1997), 495 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[16] B. H. Zimm et al., “Determination of the Parameters for Helix Formation in poly-$\gamma$-benzyl-$L$-glutamate”, Proc. Natl. Acad. Sci. USA, 45 (1959), 1601 | DOI
[17] B. H. Zimm, J. K. Bragg, “Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains”, J. Chem. Phys., 31 (1959), 526 | DOI
[18] B. H. Zimm, “Theory of “Melting” of the Helical Form in Double Chains of the DNA Type”, J. Chem. Phys., 33 (1960), 1349 | DOI
[19] B. H. Zimm, N. Rice, “The Helix–Coil Transition in Charged Macromolecules”, Mol. Phys., 3 (1960), 391 | DOI
[20] S. Lifson, A. Roig, “On the Theory of Helix–Coil Transition in Polypeptides”, J. Chem. Phys., 34 (1961), 1963 | DOI
[21] S. Lifson, B. H. Zimm, “Simplified Theory of the Helix–Coil Transition in DNA Based on a Grand Partition Function”, Biopolymers, 1 (1963), 15 | DOI
[22] S. Lifson, J. Allegra, “On the Theory of Order-Disorder Transition and Copolymer Structure of DNA”, Biopolymers, 2 (1964), 65 | DOI
[23] V. F. Morozov et al., “Microscopical Approach to the Helix–Coil Transition in DNA”, Physica A, 281 (2000), 51 | DOI
[24] V. F. Morozov et al., “Stacking and Hydrogen Bonding: DNA Cooperativity at Melting”, Biopolymers, 75 (2004), 434 | DOI
[25] A. V. Tsarukyan et al., “Order Parameters of Helix–Coil Transition in Bbiopolymers”, J. Contemp. Phys. (Armenian Ac. Sci.), 41 (2006), 54
[26] Sh. A. Tonoyan et al., “Generalized Model of Polypeptide Chain with Two-Scale Interactions”, J. Contemp. Phys. (Armenian Ac. Sci.), 42 (2007), 309 | DOI
[27] Sh. A. Tonoyan et al., “Helix-Coil Transition of Biopolymers in Solvents Interacting in Competitive and Non-Competitive Ways”, J. Contemp. Phys. (Armenian Ac. Sci.), 45 (2010), 88 | DOI
[28] A. V. Badasyan et al., “The Helix–Coil Transition in Heterogeneous Double Stranded DNA: Microcanonical Method”, J. Chem. Phys., 123 (2005), 194701 | DOI
[29] M. Serva, G. Paladin, “Gibbs Thermodynamic Potentials for Disordered Systems”, Phys. Rev. Lett., 70 (1993), 105 | DOI
[30] Sh. A. Tonoyan, “On the Theory of Helix–Coil Transition in Heterogeneous Biopolymers. Constrained Annealing Method”, J. Contemp. Phys. (Armenian Ac. Sci.), 48 (2013), 236 | DOI