Influence of nanoparticles of $\mathrm{(CuO)}$ on the stability and conductivity of BLM
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study aims to provide arguments for an increase in the stability of bilayer lipid membranes (BLM) in an electrical field in presence of $\mathrm{(CuO)}$ nanoparticles. Moreover, the sustainability of BLM becomes more stable with increasing of nanoparticles concentration. It is shown that an increase in the stability of BLM in an electrical field is mainly due to an increase in the coefficient of linear tension of the edge of a pore, which is forming in BLM. It is shown as well, that the presence of nanoparticles of $\mathrm{(CuO)}$ in the solution surrounding BLM leads to a decrease in the conductivity of the BLM.
Keywords: copper oxide nanoparticles, stability and conductivity of BLM.
@article{UZERU_2018_52_1_a6,
     author = {A. L. Torosyan and V. B. Arakelyan and G. V. Ananyan},
     title = {Influence of nanoparticles of $\mathrm{(CuO)}$  on the stability and conductivity of {BLM}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a6/}
}
TY  - JOUR
AU  - A. L. Torosyan
AU  - V. B. Arakelyan
AU  - G. V. Ananyan
TI  - Influence of nanoparticles of $\mathrm{(CuO)}$  on the stability and conductivity of BLM
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 41
EP  - 46
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a6/
LA  - en
ID  - UZERU_2018_52_1_a6
ER  - 
%0 Journal Article
%A A. L. Torosyan
%A V. B. Arakelyan
%A G. V. Ananyan
%T Influence of nanoparticles of $\mathrm{(CuO)}$  on the stability and conductivity of BLM
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 41-46
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a6/
%G en
%F UZERU_2018_52_1_a6
A. L. Torosyan; V. B. Arakelyan; G. V. Ananyan. Influence of nanoparticles of $\mathrm{(CuO)}$  on the stability and conductivity of BLM. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 41-46. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a6/

[1] L. K. Limbach et al., “Oxide Nanoparticle Uptake in Human Lung Fibroblasts: Effects of Particle Size, Agglomeration and Diffusion at Low Concentrations”, Environ. Sci. Technol., 39 (2005), 9370–9376 | DOI

[2] A. Simon-Deckers et al., “$In~vitro$ Investigation of Oxide Nanoparticle and Carbon Nanotube Toxicity and Intracellular Accumulation in A549 Human Pneumocytes”, Toxicology, 253 (2008), 137–146 | DOI

[3] J.-M. Exbrayat et al., “Harmful Effects of Nanoparticles on Animals”, Journal of Nanotechnology, 2015 (2015), 861092, 10 pp. | DOI

[4] H. T. Tien, Bilayer Lipid Membranes (BLM): Theory and Practice, Membrane Science and Technology Series, 7, eds. H.T. Tien, A. Ottova-Leitmannova, M. Dekker, 1974, 655 pp.

[5] H.T. Tien, A. Ottova-Leitmannova (eds.), Planar Lipid Bilayers (BLMs) and Their Applications, Membrane Science and Technology Series, 7, 2003, 1044 pp.

[6] H. T. , A. Ottova-Leitmannova, “The Lipid Bilayer Concept and Its Experimental Realization: from Soap Bubbles, Kitchen Sink, to Bilayer Lipid Membranes”, Journal of Membrane Sciece, 189 (2001), 83–117 | DOI

[7] S. Hackenberg et al., “Zinc Oxide Nanoparticles Induce Photocatalytic Cell Death in Human Head and Neck Squamous Cell Carcinoma Cell Lines $in~vitro~$”, International Journal of Oncology, 37:6 (2010), 1583–1590

[8] O. Bondarenko, “Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells $in~vitro$: A Critical Review”, Archives of Toxicology, 87:7 (2013), 1181–1200 | DOI

[9] S. Böhme et al., “Quantification of $\mathrm{Al_2O_3}$ Nanoparticles in Human Cell Lines Applying Inductively Coupled Plasma Mass Spectrometry (neb–ICP–MS, LA–ICP–MS) and Flow Cytometry-Based Methods”, J. Nanopart. Res., 16 (2014) | DOI

[10] L.C Jiang W. D. Zhang, “A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles-Modified Carbon Nanotube Electrode”, Biosens. Bioelectron., 25 (2010), 1402–1407 | DOI

[11] M. J. Song et al., “Non-Enzymatic Electrochemical CuO Nanoflowers Sensor for Hydrogen Peroxide Detection”, Talanta, 80 (2010), 1648–1652 | DOI

[12] R. Dastjerdi, M. Montazer, “A Review on the Application of Inorganic Nanostructured Materials in the Modification of Textiles: Focus on Antimicrobial Properties”, Colloids Surf B: Biointerfaces, 79 (2010), 5–18 | DOI

[13] K. Delgado et al., “Polypropylene with Embedded Copper Metal or Copper Oxide Nanoparticles as a Novel Plastic Antimicrobial Agent”, Letters in Applied Microbiology, 53 (2011), 50–54 | DOI

[14] A. Thit et al., “Toxicity of CuO Nanoparticles and Cu Ions to Tight Epithelial Cells from Xenopuslaevis (A6): Effects on proliferation, Cell Cycle Progression and Cell Death”, Toxicology $in~vitro$, 27:5 (2013), 1596–1601 | DOI

[15] P. Mueller et al., “Methods for the Formation of Single Bimolecular Lipid Membranes in Aqueous Solution”, J. Phys. Chem., 67:2 (1963), 534–535

[16] L. Gu et al., “A New Method for the Determination of Electrical Properties of Supported Bilayer Lipid Membranes by Cyclic Voltametry”, Bioelectrochem. Bioenerg., 39 (1996), 275–283 | DOI

[17] I. G. Abidor et al., “Electric Breakdown of Bilayer Lipid Membranes. I: The Main Experimental Facts and Their Qualitative Discussion”, Bioelectrochemistry and Bioenergetics, 6 (1979), 37–52 | DOI

[18] G. B. Melikyan et al., “The Influence of Gangliosides on the Hydrophilic Pore Edge Line Tension and Monolayer Fusion of Lipid Membranes”, Biochim. Biophys. Acta, 1030 (1990), 11–15 | DOI

[19] A. L. Torosyan, V. B. Arakelyan, “Influence of H2TOEtPyP4 Porphyrin on the Stability and Conductivity of Bilayer Lipid Membranes”, European Biophysics Journal, 44:8 (2015), 745–750 | DOI

[20] V. F. Pastushenko, “Electric Breakdown of Bilayer Lipid Membranes. II: Calculation of the Membrane Lifetime in the Steady-State Diffusion Approximation”, Bioelectrochemistry and Bioenergetics, 6 (1979), 37–52 | DOI

[21] A. E. Tyurnina et al., “Synthesis and Study of Stable Colloidal Solutions of Copper Nanoparticles”, Solid State Physics, 56:7 (2014), 1379–1385 (in Russian) | DOI

[22] M. E. Grigore et al., “Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles”, Pharmaceuticals, 9 (2016), 75 | DOI

[23] U. Pedersen et al., “The Effect of Calcium on the Properties of Charged Phospholipid Bilayers”, Biochimica et Biophysica Acta (BBA) Biomembranes, 1758:5 (2006), 573–582 | DOI

[24] E. V. Shevchenko, V. F. Antonov, “Influence of Divalent Ions on Physical Properties of Bilayer Lipid Membranes from Zwitterionic and Acidic Phospholipids”, Siberian Medical Journal, 3:2 (1995), 5–8 (in Russian)