On convergence of the Fourier double series with respect to the Vilenkin systems
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 12-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{W_{k}(x)\}_{k=0}^{\infty}$ be either unbounded or bounded Vilenkin system. Then, for each $0\varepsilon1$, there exist a measurable set $E\subset[0,1)^{2}$ of measure $|E|>1-\varepsilon$, and a subset of natural numbers $\Gamma$ of density $1$ such that for any function $f(x,y)\in L^{1}(E)$ there exists a function $g(x,y)\in L^{1}[0,1)^{2}$, satisfying the following conditions: $g(x,y)=f(x,y)$ on $E$; the nonzero members of the sequence $\{|c_{k,s}(g)|\}$ are monotonically decreasing in all rays, where $c_{k,s}(g)=\int\limits_{0}^{1}\int\limits_{0}^{1}g(x,y)\overline{{W}_{k}}(x)\overline{W_{s}}(y)dxdy$; $\displaystyle\lim_{R\in \Gamma,\ R\rightarrow\infty}S_{R}((x,y),g)=g(x,y)$ almost everywhere on $[0,1)^2$, where $S_{R}((x,y),g)=\sum\limits_{k^{2}+s^{2}\leq R^{2}}c_{k,s}(g)W_{k}(x)W_{s}(y)$.
Keywords: Vilenkin system, convergence almost everywhere
Mots-clés : Fourier coefficients.
@article{UZERU_2018_52_1_a2,
     author = {L. S. Simonyan},
     title = {On convergence of the {Fourier} double series with respect to the {Vilenkin} systems},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--18},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a2/}
}
TY  - JOUR
AU  - L. S. Simonyan
TI  - On convergence of the Fourier double series with respect to the Vilenkin systems
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 12
EP  - 18
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a2/
LA  - en
ID  - UZERU_2018_52_1_a2
ER  - 
%0 Journal Article
%A L. S. Simonyan
%T On convergence of the Fourier double series with respect to the Vilenkin systems
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 12-18
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a2/
%G en
%F UZERU_2018_52_1_a2
L. S. Simonyan. On convergence of the Fourier double series with respect to the Vilenkin systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 12-18. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a2/