On the minimal coset coverings of the set of singular and of the set of nonsingular matrices
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 8-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is determined minimum number of cosets over linear subspaces in $F_q$ necessary to cover following two sets of $A(n\times n)$ matrices. For one of the set of matrices $\det(A)=0$ and for the other set$\det(A)\neq 0$. It is proved that for singular matrices this number is equal to $1+q+q^2+\ldots+q^{n-1}$ and for the nonsingular matrices it is equal to $\dfrac{(q^n-1)(q^n-q)(q^n-q^2)\cdots(q^n-q^{n-1})}{q^{\binom{n}{2}}}$.
Keywords: linear algebra, covering with cosets
Mots-clés : matrices.
@article{UZERU_2018_52_1_a1,
     author = {A. V. Minasyan},
     title = {On the minimal coset coverings of the set of singular and of the set of nonsingular matrices},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--11},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a1/}
}
TY  - JOUR
AU  - A. V. Minasyan
TI  - On the minimal coset coverings of the set of singular and of the set of nonsingular matrices
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2018
SP  - 8
EP  - 11
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a1/
LA  - en
ID  - UZERU_2018_52_1_a1
ER  - 
%0 Journal Article
%A A. V. Minasyan
%T On the minimal coset coverings of the set of singular and of the set of nonsingular matrices
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2018
%P 8-11
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a1/
%G en
%F UZERU_2018_52_1_a1
A. V. Minasyan. On the minimal coset coverings of the set of singular and of the set of nonsingular matrices. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 52 (2018) no. 1, pp. 8-11. http://geodesic.mathdoc.fr/item/UZERU_2018_52_1_a1/

[1] A. A. Alexanyan, Disjunctive Normal Forms over Linear Functions. Theory and Applications, YSU Press, Yer., 1990 (in Russian) | MR

[2] A. A. Alexanyan, “Realization of Boolean Functions by Disjunctions of Products of Linear Forms.”, Soviet Math. Dokl., 39:1 (1989), 131–135 (in Russian) | MR

[3] A. A. Alexanyan, R. K. Serobyan Covers Concerned with the Quadratic over Finite Field Equations, Reports of NAS RA, 92 (1992), 6–10 (in Russian)

[4] J. Dieudonne, “Sur Une Generalisation Du Groupe Orthogonal a Quatre Variables”, Arch. Math., 1 (1949), 282–287 | DOI | MR

[5] C. de Seguins Pazzis, “The Affine Preservers of Non-Singular Matrices”, Arch. Math., 95 (2010), 333-–342 | DOI | MR

[6] R. Meshulam, “On the Maximal Rank in a Subspace of Matrices”, The Quarterly Journal of Mathematics, 36:2 (1985), 225–229 | DOI | MR

[7] C. de Seguins Pazzis, “Large Affine Spaces of Non-Singular Matrices”, Transactions of the American Mathematical Society, 365:5 (2013), 2569–2596 | MR