Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 250-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$ on the unit circle $T=\{z: |z|=1\}$ is investigated, where $\rho(t)={|t-t_{k}|}^{\alpha_{k}}$,  $k=1,\dots,m$, $t_{k}\in T$ and $\alpha_{k}$ are arbitrary real numbers. The problem is to determine a function $\Phi(z)$ analytic in unit disc such that: $\displaystyle\lim_{r\to 1-0}\|Re\Phi(rt)-f(t)\|_{L^{1}(\rho_{r})}=0,$ where $f\in L^{1}(\rho)$. In the paper necessary and sufficient conditions for solvability of the problem are given and the general solution is written in the explicit form.
Keywords: Dirichlet problem, weighted spaces, Cauchy type integral.
@article{UZERU_2017_51_3_a6,
     author = {V. G. Petrosyan},
     title = {Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {250--254},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/}
}
TY  - JOUR
AU  - V. G. Petrosyan
TI  - Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 250
EP  - 254
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/
LA  - en
ID  - UZERU_2017_51_3_a6
ER  - 
%0 Journal Article
%A V. G. Petrosyan
%T Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 250-254
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/
%G en
%F UZERU_2017_51_3_a6
V. G. Petrosyan. Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 250-254. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/

[1] N.I. Muskhelishvili, Singular Integral Equations. Courier Corporation, 2008, 447 pp. | MR

[2] F.D. Gakhov, Boundary Value Problems. Courier Corporation, 1990, 551 pp. | MR

[3] K. Kazaryan, F. Soria, I. Spitkovsky, “The Riemann Boundary Value Problem in Spaces with Weight Admitting Singularities”, Dokl. RAN, 357:6 (1997), 717–719 (in Russian) | MR

[4] K. Hoffman, Banach Spaces of Analytic Functions, 2007, 224 pp. | MR

[5] H.M. Hayrapetyan, “The Dirichlet Problem in Spaces with Weight”, Proceedings of NAS of Armenia. Mathematics, 36:3 (2001), 22–44 | MR

[6] H.M. Hayrapetyan, A.V. Tsutsulyan, “On the Dirichlet Problem in a Half-Plane in Weighted Spaces”, Proceedings of the YSU. Natural Sciences, 2007, no. 3, 3–10 (in Russian) | Zbl

[7] V.G. Petrosyan, H.M. Hayrapetyan, “On Dirichlet Problem for Biharmonic Functions in the Weighted Spaces”, National Polytechnic University of Armenia, Bulletin, Collection of Scientific Papers of NPUA, part I, 2017, 32–37 (in Russian) | MR

[8] V.G. Petrosyan, H.M. Hayrapetyan, “Riemann Problem in the Weighted Spaces $L^1(r)$”, Journal of Contemporary Mathematical Analysis, 51:5 (2016), 215–227 | DOI | MR