Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 250-254

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$ on the unit circle $T=\{z: |z|=1\}$ is investigated, where $\rho(t)={|t-t_{k}|}^{\alpha_{k}}$,  $k=1,\dots,m$, $t_{k}\in T$ and $\alpha_{k}$ are arbitrary real numbers. The problem is to determine a function $\Phi(z)$ analytic in unit disc such that: $\displaystyle\lim_{r\to 1-0}\|Re\Phi(rt)-f(t)\|_{L^{1}(\rho_{r})}=0,$ where $f\in L^{1}(\rho)$. In the paper necessary and sufficient conditions for solvability of the problem are given and the general solution is written in the explicit form.
Keywords: Dirichlet problem, weighted spaces, Cauchy type integral.
@article{UZERU_2017_51_3_a6,
     author = {V. G. Petrosyan},
     title = {Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {250--254},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/}
}
TY  - JOUR
AU  - V. G. Petrosyan
TI  - Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 250
EP  - 254
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/
LA  - en
ID  - UZERU_2017_51_3_a6
ER  - 
%0 Journal Article
%A V. G. Petrosyan
%T Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 250-254
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/
%G en
%F UZERU_2017_51_3_a6
V. G. Petrosyan. Dirichlet boundary value problem in the weighted spaces $L^{1}(\rho)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 250-254. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a6/