Uniqueness theorems for multiple Franklin series
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, that if the square partial sums $\sigma_{q_n}(x)$ of a multiple Franklin series converge in measure to a function $f$, the ratio $\dfrac{q_{n+1}}{q_n}$ is bounded and the majorant of partial sums satisfies to a necessary condition, then the coefficients of the series are restored by the function $f$.
Keywords: majorant of partial sums, $A$-integral, uniqueness.
@article{UZERU_2017_51_3_a5,
     author = {K. A. Navasardyan},
     title = {Uniqueness theorems for multiple {Franklin} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/}
}
TY  - JOUR
AU  - K. A. Navasardyan
TI  - Uniqueness theorems for multiple Franklin series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 241
EP  - 249
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/
LA  - en
ID  - UZERU_2017_51_3_a5
ER  - 
%0 Journal Article
%A K. A. Navasardyan
%T Uniqueness theorems for multiple Franklin series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 241-249
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/
%G en
%F UZERU_2017_51_3_a5
K. A. Navasardyan. Uniqueness theorems for multiple Franklin series. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/

[1] Ph. Franklin, “A Set of Continuous Orthogonal Functions”, Math. Ann., 100 (1928), 522–528 | DOI | MR

[2] G.G. Gevorkyan, “Uniqueness Theorem for Multiple Franklin Series”, Math. Zametki, 101:2 (2017), 199–210 (in Russian) | DOI | MR | Zbl

[3] G.G. Gevorkyan, M.P. Poghosyan, “On Recovering of Coefficients of a Franklin Series with the “Good” Majorant of Partial Sums”, Izv. NAN Armenii. Ser. Math., 52:5 (2017), 25–35

[4] Math. Notes, 46:2 (1989), 609–615 | DOI | MR | Zbl

[5] G.G. Gevorkyan, “Majorants and Uniqueness of Series in the Franklin System”, Math. Zametki, 59:4 (1996), 521–545 (in Russian) | DOI | MR | Zbl

[6] G.G. Gevorkyan, “Uniqueness Theorems for Series in the Franklin System”, Math. Zametki, 98:5 (2015), 786–789 (in Russian) | DOI | MR | Zbl

[7] M.P. Poghosyan, “Uniqueness of Series by General Franklin Systems”, Izv. NAN Armenii. Ser. Math., 35:4 (2000), 77–83 (in Russian) | MR | Zbl

[8] G.G. Gevorkyan, K.A. Navasardyan, “On Haar Series of $A$-Integrable Functions”, Izv. NAN Armenii. Matematika, 52:3 (2017), 30–45 (in Russian) | MR | Zbl

[9] V.V. Kostin, “Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions”, Math. Zametki, 73:5 (2003), 704–723 (in Russian) | DOI | MR | Zbl

[10] V.V. Kostin, “Generalization of the Balashov Theorem on Subseries of the Fourier–Haar Series”, Math. Zametki, 76:5 (2004), 740–747 (in Russian) | DOI | MR | Zbl

[11] G.G. Gevorkyan, K.A. Navasardyan, “On a Summation Method for Series with Respect to Vilenkin and Haar Systems”, Reports NAS of Armenia, 117:1 (2017), 20–25 (in Russian)