Uniqueness theorems for multiple Franklin series
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, that if the square partial sums $\sigma_{q_n}(x)$ of a multiple Franklin series converge in measure to a function $f$, the ratio $\dfrac{q_{n+1}}{q_n}$ is bounded and the majorant of partial sums satisfies to a necessary condition, then the coefficients of the series are restored by the function $f$.
Keywords: majorant of partial sums, $A$-integral, uniqueness.
@article{UZERU_2017_51_3_a5,
     author = {K. A. Navasardyan},
     title = {Uniqueness theorems for multiple {Franklin} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/}
}
TY  - JOUR
AU  - K. A. Navasardyan
TI  - Uniqueness theorems for multiple Franklin series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 241
EP  - 249
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/
LA  - en
ID  - UZERU_2017_51_3_a5
ER  - 
%0 Journal Article
%A K. A. Navasardyan
%T Uniqueness theorems for multiple Franklin series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 241-249
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/
%G en
%F UZERU_2017_51_3_a5
K. A. Navasardyan. Uniqueness theorems for multiple Franklin series. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/