Uniqueness theorems for multiple Franklin series
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved, that if the square partial sums $\sigma_{q_n}(x)$ of a multiple Franklin series converge in measure to a function $f$, the ratio $\dfrac{q_{n+1}}{q_n}$ is bounded and the majorant of partial sums satisfies to a necessary condition, then the coefficients of the series are restored by the function $f$.
Keywords:
majorant of partial sums, $A$-integral, uniqueness.
@article{UZERU_2017_51_3_a5,
author = {K. A. Navasardyan},
title = {Uniqueness theorems for multiple {Franklin} series},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {241--249},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/}
}
TY - JOUR AU - K. A. Navasardyan TI - Uniqueness theorems for multiple Franklin series JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 241 EP - 249 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/ LA - en ID - UZERU_2017_51_3_a5 ER -
K. A. Navasardyan. Uniqueness theorems for multiple Franklin series. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 241-249. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a5/