Investigation of localized electromagnetic field in a subwave-length metallic slit
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 269-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electromagnetic field localization in a subwavelength metallic slit by a thermo-elastic optical indicator microscope (TEOIM) was investigated. As an indicator for the TEOIM system a slide glass with sizes of $20\times20\times0.5 (mm)$ was used, on the surface of which an Al film of $20~nm$ thickness was vaporized using the vacuum evaporation technique, with various slit width ($10-50~µm$). Strongly localized electromagnetic field has been exited in the slits by $50~ GHz$ generator and was visualized by a TEOIM. The waveguide properties of the system were characterized by COMSOL Multiphysics$^\circledR$ additionally. The simulation results are in good agreement with the visualization data set.
Keywords: subwavelength metallic slit, thermo-elasticity, visualization, field localization.
@article{UZERU_2017_51_3_a10,
     author = {Sh. Kh. Arakelyan},
     title = {Investigation of localized electromagnetic field in a subwave-length metallic slit},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {269--274},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a10/}
}
TY  - JOUR
AU  - Sh. Kh. Arakelyan
TI  - Investigation of localized electromagnetic field in a subwave-length metallic slit
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 269
EP  - 274
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a10/
LA  - en
ID  - UZERU_2017_51_3_a10
ER  - 
%0 Journal Article
%A Sh. Kh. Arakelyan
%T Investigation of localized electromagnetic field in a subwave-length metallic slit
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 269-274
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a10/
%G en
%F UZERU_2017_51_3_a10
Sh. Kh. Arakelyan. Investigation of localized electromagnetic field in a subwave-length metallic slit. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 269-274. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a10/

[1] D.F.P. Pile, D.K. Gramotnev, “Plasmonic Subwavelength Waveguides: Next to Zero Losses at Sharp Bends”, Opt. Lett., 30:10 (2005), 1186 | DOI

[2] S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.-Y. Laluet, T.W. Ebbesen, “Channel Plasmon Subwavelength Waveguide Components Including Interferometers and Ring Resonators”, Nature, 440:7083 (2006), 508–511 | DOI

[3] Kh.V. Nerkararyan, “Superfocusing of a Surface Polariton in a Wedge-Like Structure”, Phys. Lett. A, 237:1–2 (1997), 103–105 | DOI

[4] A. Pors, Kh.V. Nerkararyan, K. Sahakyan, S.I. Bozhevolnyi, “Enhanced Nonresonant Light Transmission Through Subwavelength Slits in Metal”, Opt. Lett., 41:2 (2016), 242 | DOI

[5] G. Veronis, S. Fan, “Modes of Subwavelength Plasmonic Slot Waveguides”, J. Light.Technol., 25:9 (2007), 2511–2521 | DOI

[6] F. Kong, K. Li, H. Huang, B.-I. Wu, J.A. Kong, “Analysis of the Surface Magnetoplasmon Modes in the Semiconductor Slit Waveguide at Terahertz Frequencies”, Prog. Electromagn. Res., 82 (2008), 257–270 | DOI

[7] M. Wächter, M. Nagel, H. Kurz, “Metallic Slit Waveguide for Dispersion-Free Low-Loss Terahertz Signal Transmission”, Appl. Phys. Lett., 90:6 (2007), 61111 | DOI

[8] M.A. Seo et al., “Terahertz Field Enhancement by a Metallic Nano Slit Operating Beyond the Skin-Depth Limit”, Nat. Photonics, 3:3 (2009), 152–156 | DOI

[9] H. Lee, S. Arakelyan, B. Friedman, K. Lee, “Temperature and Microwave Near Field Imaging by Thermo-Elastic Optical Indicator Microscopy”, Sci. Rep., 6:1 (2016), 39696 | DOI

[10] H. Bosman, Y.Y. Lau, R.M. Gilgenbach, “Microwave Absorption on a Thin Film”, Appl. Phys. Lett., 82:9 (2003), 1353 | DOI