Analogues of Nielsen’s and Magnus’s theorems for free Burnside groups of period $3$
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 217-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the free Burnside groups $B(m,3)$ of period 3 and rank $m\geq1$ have Magnus's property, that is if in $B(m,3)$ the normal closures of $r$ and $s$ coincide, then $r$ is conjugate to $s$ or $s^{-1}$. We also prove that any automorphism of $B(m,3)$ induced by a Nielsen automorphism of the free group $F_m$ of rank $m$. We show that the kernel of the natural homomorphism $\mathrm{Aut}(B(2,3)) \rightarrow GL_2(\mathbb{Z}_3)$ is the group of inner automorphisms of $B(2,3)$.
@article{UZERU_2017_51_3_a1,
     author = {V. S. Atabekyan and H. T. Aslanyan and H. A. Grigorian and A. E. Grigoryan},
     title = {Analogues of {Nielsen{\textquoteright}s} and {Magnus{\textquoteright}s} theorems for free {Burnside} groups of period $3$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {217--223},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a1/}
}
TY  - JOUR
AU  - V. S. Atabekyan
AU  - H. T. Aslanyan
AU  - H. A. Grigorian
AU  - A. E. Grigoryan
TI  - Analogues of Nielsen’s and Magnus’s theorems for free Burnside groups of period $3$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 217
EP  - 223
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a1/
LA  - en
ID  - UZERU_2017_51_3_a1
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%A H. T. Aslanyan
%A H. A. Grigorian
%A A. E. Grigoryan
%T Analogues of Nielsen’s and Magnus’s theorems for free Burnside groups of period $3$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 217-223
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a1/
%G en
%F UZERU_2017_51_3_a1
V. S. Atabekyan; H. T. Aslanyan; H. A. Grigorian; A. E. Grigoryan. Analogues of Nielsen’s and Magnus’s theorems for free Burnside groups of period $3$. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 217-223. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a1/

[1] W. Magnus, “Uber Diskontinuerliche Gruppen Mit Einer Definierenden Relation (Der Freiheitssatz)”, J. Reine Angew. Math., 163 (1930), 141–165 | MR | Zbl

[2] J. Howie, “Some Results on One-Relator Surface Groups”, Bol. Soc. Mat. Mexicana, 3:10 (2004), 255–262 | MR

[3] O. Bogopolski, K. Sviridov, “A Magnus Theorem for Some One-Relator Groups V”, Geometry and Topology Monographs, 14 (2008), 63–73 | DOI | MR | Zbl

[4] O. Bogopolski, “A Surface Groups Analogue of a Theorem of Magnus”, Geometric Methods in Group Theory. Contemp. Math., 372 (2005), 59–69 | DOI | MR | Zbl

[5] R. Lyndon, P. Schupp, Combinatorial Theory of Groups, Springer-Verlag, NY, 1977 | MR

[6] S. Andreadakis, “On the Automorphisms of Free Groups and Free Nilpotent Groups”, Proceedings of the London Mathematical Society, s3-15:1 (1965), 239–268 | DOI | MR | Zbl

[7] S. Bachmuth, “Induced Automorphisms of Free Groups and Free Metabelian Groups”, Transactions of the American Mathematical Society, 122:1 (1966), 1–17 | DOI | MR | Zbl

[8] R.M. Bryant, O. Macedonska, “Automorphisms of Relatively Free Nilpotent Groups of Infinite Rank”, Journal of Algebra, 121:2 (1989), 388–398 | DOI | MR

[9] M.R. Bridson, K. Vogtmann, “Automorphisms of Automorphism Groups of Free Groups”, J. Algebra, 229 (2000), 785–792 | DOI | MR | Zbl

[10] S. Gersten, “A Presentation for the Special Automorphism Group of a Free Group”, J. Pure Appl. Algebra, 33:3 (1984), 269–279 | DOI | MR | Zbl

[11] V.S. Atabekyan, “Automorphism Groups and Endomorphism Semigroups of Groups $B(m;n)$”, Algebra and Logic, 54:1 (2015), 58–62 | DOI | MR | Zbl

[12] V. Roman’kov, “Automorphisms of Groups”, Acta Applicandae Mathematicae, 29 (1992), 241–280 | DOI | MR | Zbl

[13] M. Hall, The Theory of Groups, The Macmillan Company, NY, 1959 | MR | Zbl