Geometric probability calculation for a triangle
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 211-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P(L(\omega)\subset \mathbf {D})$ is the probability that a random segment of length $l$ in $\mathbb{R}^{n}$ having a common point with body $\mathbf {D}$ entirely lies in $\mathbf {D}$. In the paper, using a relationship between $P(L(\omega)\subset \mathbf {D}) $ and covariogram of $\mathbf {D}$ the explicit form of $P(L(\omega)\subset \mathbf {D})$ for arbitrary triangle on the plane is obtained.
Keywords: Geometric probability calculation for a triangle.
@article{UZERU_2017_51_3_a0,
     author = {N. G. Aharonyan and H. O. Harutyunyan},
     title = {Geometric probability calculation for a triangle},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {211--216},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a0/}
}
TY  - JOUR
AU  - N. G. Aharonyan
AU  - H. O. Harutyunyan
TI  - Geometric probability calculation for a triangle
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 211
EP  - 216
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a0/
LA  - en
ID  - UZERU_2017_51_3_a0
ER  - 
%0 Journal Article
%A N. G. Aharonyan
%A H. O. Harutyunyan
%T Geometric probability calculation for a triangle
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 211-216
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a0/
%G en
%F UZERU_2017_51_3_a0
N. G. Aharonyan; H. O. Harutyunyan. Geometric probability calculation for a triangle. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 3, pp. 211-216. http://geodesic.mathdoc.fr/item/UZERU_2017_51_3_a0/

[1] L.A. Santalo, Integral Geometry and Geometric Probability, Addision-Wesley, 2004 | MR

[2] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer, 2008 | MR | Zbl

[3] A.G. Gasparyan, V.K. Ohanyan, “Recognition of Triangles by Covariogram”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 48:3 (2013), 110–122 | DOI | MR | Zbl

[4] H.S. Harutyunyan, V.K. Ohanyan, “Orientation-Dependent Section Distributions for Convex Bodies”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 49:3 (2014) | MR

[5] A.G. Gasparyan, V.K. Ohanyan, “Orientation-Dependent Distribution of the Length of a Random Segment and Covariogram”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 50:2 (2015), 90–97 | DOI | MR | Zbl

[6] N.G. Aharonyan, V.K. Ohanyan, “Kinematic Measure of Intervals Lying in Domains”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 46:5 (2011), 280–288 | DOI | MR | Zbl

[7] N.G. Aharonyan, V.K. Ohanyan, “Calculation of Geometric Probabilities Using Covariogram of Convex Bodies”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 53:3 (2018) | MR