Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_1_a7, author = {M. V. Belubekyan}, title = {On the condition of planar localized vibrations appearance in the vicinity of the free edge of a thin rectangular plate}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {42--45}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a7/} }
TY - JOUR AU - M. V. Belubekyan TI - On the condition of planar localized vibrations appearance in the vicinity of the free edge of a thin rectangular plate JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 42 EP - 45 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a7/ LA - en ID - UZERU_2017_51_1_a7 ER -
%0 Journal Article %A M. V. Belubekyan %T On the condition of planar localized vibrations appearance in the vicinity of the free edge of a thin rectangular plate %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 42-45 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a7/ %G en %F UZERU_2017_51_1_a7
M. V. Belubekyan. On the condition of planar localized vibrations appearance in the vicinity of the free edge of a thin rectangular plate. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 42-45. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a7/
[1] M.V. Belubekyan, “Surface Waves in Elastic Media”, The Problems of Solid Mechanics. Inst. of Mechanics NAS RA, 1997, 79–96 (in Russian)
[2] M.V. Wilde, J.D. Kaplunov, L.Yu. Kossovich, Boundary and Interface Resonance Phenomena in Elastic Bodies, Fizmatlit, M, 2010, 280 pp. (in Russian)
[3] R.V. Ardazishvili, “Influence of the Method of Fixing of Front Surface on the Damping of the Antisymmetric Edge Waves of Higher Order in the Plates”, XI Congress on Fundamental Problems of Theoretical and Applied Mechanics (Kazan, 2015) (in Russian)
[4] S.A. Ambartsumian, Theory of Anisotropic Plates, Nauka, M., 1987, 360 pp. (in Russian) | MR
[5] M.V. Belubekyan, “The Equations of the Theory of Plates, Taking Into Account the Transverse Shears”, Problems of Mechanics of Thin Deformable Bodies, Acadimia Press, Yer., 2002, 67–88 (in Russian)
[6] W. Nowacki, Theory of Elasticity, Mir, M, 1975, 872 pp. (in Russian) | MR
[7] V.M. Belubekyan, M.V. Belubekyan, “The 3D Problem of the Elastic Wave Guide with Rectangular Cross Section”, The Problems of Solid Mechanics. Inst. of Mechanics NAS RA Mechanics, 2015, no. 4, 3–8 (in Russian) | MR
[8] P.E. Tovstik, The Stability of Thin Shells. Asymptotic Methods, Nauka, M., 1995, 320 pp. (in Russian) | MR