Embedding theorems for multianisotropic spaces with two vertices of anisotropicity
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 29-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove embedding theorems for multianisotropic spaces in the case when the Newton polyhedron has two vertices of anisotropicity. The case of one anisotropicity vertex of the polyhedron was studied in previous papers of one of the authors. The present paper is the continuation of those.
Keywords: multianisotropic Sobolev spaces, integral representation, embedding theorems.
Mots-clés : multianisotropic polynomial
@article{UZERU_2017_51_1_a5,
     author = {G. A. Karapetyan and H. A. Petrosyan},
     title = {Embedding theorems for multianisotropic spaces with two vertices of anisotropicity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {29--37},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - H. A. Petrosyan
TI  - Embedding theorems for multianisotropic spaces with two vertices of anisotropicity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 29
EP  - 37
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/
LA  - en
ID  - UZERU_2017_51_1_a5
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A H. A. Petrosyan
%T Embedding theorems for multianisotropic spaces with two vertices of anisotropicity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 29-37
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/
%G en
%F UZERU_2017_51_1_a5
G. A. Karapetyan; H. A. Petrosyan. Embedding theorems for multianisotropic spaces with two vertices of anisotropicity. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/