Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_1_a5, author = {G. A. Karapetyan and H. A. Petrosyan}, title = {Embedding theorems for multianisotropic spaces with two vertices of anisotropicity}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {29--37}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/} }
TY - JOUR AU - G. A. Karapetyan AU - H. A. Petrosyan TI - Embedding theorems for multianisotropic spaces with two vertices of anisotropicity JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 29 EP - 37 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/ LA - en ID - UZERU_2017_51_1_a5 ER -
%0 Journal Article %A G. A. Karapetyan %A H. A. Petrosyan %T Embedding theorems for multianisotropic spaces with two vertices of anisotropicity %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 29-37 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/ %G en %F UZERU_2017_51_1_a5
G. A. Karapetyan; H. A. Petrosyan. Embedding theorems for multianisotropic spaces with two vertices of anisotropicity. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 29-37. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a5/
[1] Amer. Math. Soc. Transl., 1963, no. 2(34), 39—68 | Zbl | Zbl
[2] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Novosibirsk, 1988 (in Russian)
[3] S. M. Nikolskii, “On a Problem of S.L. Sobolev.”, Sib. Math. Journal, 3:6 (1962), 845–857 (in Russian) | MR
[4] K. T. Smith, “Inequalities for Formally Positive Integro-Differential Forms”, Bull. Amer. Math. Soc., 67:4 (1961), 368–370 | DOI | MR | Zbl
[5] V. P. Il'in, “Integral Representations of Differentiable Functions and Their Application to Questions of Continuation of Functions of Classes $W^l_p(G)$”, Sib. Math. Journal, 8:3 (1967), 573–586 (in Russian) | MR | Zbl
[6] V. P. Il'in, “On inequalities between norms of partial derivatives of functions of several variables”, Proc. Numerical methods and inequalities in function spaces, Work collection, Trudy Mat. Inst. Steklov., 84, 1965, 144–173 (in Russian) | MR | Zbl
[7] Proc. Steklov Inst. Math., 117 (1972), 343–352 (in Russian) | MR | Zbl
[8] Math. USSR-Sb., 2:4 (1967), 521–534 | DOI | MR | Zbl
[9] O. V. Besov, V. P. Il’in, S. M. Nikolskii, Integral Representations of Functions and Embedding Theorems, Nauka, M., 1975, 480 pp. (in Russian) | MR | Zbl
[10] G. A. Karapetyan, “Integral Representation of Functions and Embedding Theorems for Multianisotropic Spaces on a Plane with One Vertex of Anisotropicity”, Journal of Contemporary Math. Analysis (Armenian Academy of Sciences), 51:6 (2016), 23–42 | MR
[11] G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case”, Eurasian Math. J., 7:2 (2016), 19–37 | MR
[12] G.A. Karapetyan, “Integral Representation of Functions and Embedding Theorems for n-Dimensional Multianisotropic Spaces with One Vertex of Anisotropicity”, Sib. Math. Journal, 17 (2017) | MR