Unique properties of $\mathrm{ZnO}$ quantum rings
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 117-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electronic states and optical transitions of a $\mathrm{ZnO}$ quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a $\mathrm{GaAs}$ ring. Strong Zeeman and Coulomb interactions of the $\mathrm{ZnO}$ system, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm effect in a $\mathrm{ZnO}$ quantum ring strongly depends on the electron number.
Keywords: quantum ring, Aharonov–Bohm effect.
@article{UZERU_2017_51_1_a22,
     author = {A. Kh. Manaselyan},
     title = {Unique properties of $\mathrm{ZnO}$ quantum rings},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {117--120},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a22/}
}
TY  - JOUR
AU  - A. Kh. Manaselyan
TI  - Unique properties of $\mathrm{ZnO}$ quantum rings
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 117
EP  - 120
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a22/
LA  - en
ID  - UZERU_2017_51_1_a22
ER  - 
%0 Journal Article
%A A. Kh. Manaselyan
%T Unique properties of $\mathrm{ZnO}$ quantum rings
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 117-120
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a22/
%G en
%F UZERU_2017_51_1_a22
A. Kh. Manaselyan. Unique properties of $\mathrm{ZnO}$ quantum rings. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 117-120. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a22/

[1] Y. Aharonov, D. Bohm, “Significance of Electromagnetic Potentials in the Quantum Theory”, Phys. Rev., 115 (1959), 485–491 | DOI | MR | Zbl

[2] M. Büttiker, Y. Imry, R. Landauer, “Josephson Behavior in Small Normal One-Dimensional Rings”, Phys. Lett. A, 96 (1983), 365–367 | DOI

[3] V. Halonen, P. Pietiläinen, T. Chakraborty, “Optical-Absorption Spectra of Quantum Dots andRings with a Repulsive Scattering Center”, Euro. Phys. Lett., 33 (1996), 377–382 | DOI

[4] T. Chakraborty, “Nanoscopic Quantum Rings: A New Perspective”, Adv. in Solid State Phys, 43 (2003), 79 | DOI

[5] J. Mannhart, D.G. Schlom, “Oxide Interfaces – An Opportunity for Electronics”, Science, 327 (2010), 1607 | DOI

[6] H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, “Emergent Phenomenaat Oxide Interfaces”, Nat. Mater., 11 (2012), 103–113 | DOI

[7] J.G. Lu, Z.Z. Ye, Y.Z. Zhang, Q.L. Liang, Sz. Fujita, Z.L. Wang, “Self-Assembled ZnO QuantumDots with Tunable Optical Properties”, Appl. Phys. Lett., 89 (2006), 3

[8] A. Ghazaryan, A. Manaselyan, T. Chakraborty, “Tuning of Exciton States in a MagneticQuantum Ring”, Physica E, 66 (2015), 157–161 | DOI