Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_1_a2, author = {G. G. Gevorkyan and K. A. Navasardyan}, title = {On a summation method for {Vilenkin} and generalized {Haar} systems}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {13--17}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a2/} }
TY - JOUR AU - G. G. Gevorkyan AU - K. A. Navasardyan TI - On a summation method for Vilenkin and generalized Haar systems JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 13 EP - 17 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a2/ LA - en ID - UZERU_2017_51_1_a2 ER -
%0 Journal Article %A G. G. Gevorkyan %A K. A. Navasardyan %T On a summation method for Vilenkin and generalized Haar systems %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 13-17 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a2/ %G en %F UZERU_2017_51_1_a2
G. G. Gevorkyan; K. A. Navasardyan. On a summation method for Vilenkin and generalized Haar systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 13-17. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a2/
[1] Sh.V. Kheladze, “On Everywhere Divergence of Fourier–Walsh Series”, Soobshch. AN Gruz. SSR, 77:2 (1975), 305–307 (in Russian) | MR
[2] Sh.V. Kheladze “On Everywhere Divergence of Fourier Series with Respect to a Bounded Vilenkin System”, Trudy Tbilisskogo Math. Inst. AN Gruz. SSR, 58 (1978), 225–242 (in Russian) | MR
[3] N.J. Vilenkin, “On a Class of Complete Orthonormal System”, Izv. Akad. Nauk SSSR. Matematika, 11:4 (1947), 363–400 (in Russian) | MR | Zbl
[4] F. Weisz, “Summation of Fourier Series”, Acta Math. Acad. Paedagog. Nyhazi., 20 (2004), 239–266 | MR | Zbl
[5] M. De Guzman, Differentation of Integrals in $\mathbb{R}^n$, Mir, M., 1978, 200 pp. (in Russia) | MR