Excitonic absorption in gapped graphene systems
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Excitonic absorption in monolayer and bilayer graphene systems with opened energy gap in the field of laser radiation is investigated. The obtained value of excitonic binding energy in monolayer is in good agreement with the exact analytical solution. It is shown that the account of all tight binding parameters in bilayer graphene leads to an increase of exciton binding energy.
Keywords: monolayer graphene, graphene bilayer, laser radiation, exciton.
@article{UZERU_2017_51_1_a16,
     author = {A. P. Djotyan and A. A. Avetisyan},
     title = {Excitonic absorption in gapped graphene systems},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a16/}
}
TY  - JOUR
AU  - A. P. Djotyan
AU  - A. A. Avetisyan
TI  - Excitonic absorption in gapped graphene systems
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 93
EP  - 96
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a16/
LA  - en
ID  - UZERU_2017_51_1_a16
ER  - 
%0 Journal Article
%A A. P. Djotyan
%A A. A. Avetisyan
%T Excitonic absorption in gapped graphene systems
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 93-96
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a16/
%G en
%F UZERU_2017_51_1_a16
A. P. Djotyan; A. A. Avetisyan. Excitonic absorption in gapped graphene systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 93-96. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a16/

[1] K.S. Novoselov, A.K. Geim et al., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306 (2004), 666 | DOI

[2] A.H. Castro Neto, “The Electronic Properties of Graphene”, Rev. Mod. Phys., 81 (2009), 109 | DOI

[3] F. Wang et al., “Gate Variable Optical Transitions in Graphene”, Science, 320 (2008), 206 | DOI

[4] E.V. Castro et al., “Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect”, Phys. Rev. Lett., 99 (2007), 216802 | DOI

[5] A. Avetisyan et al., “Electric-Field Control of the Band Gap and Fermi Energy in Graphene Multilayers by Top and Back Gates”, Phys. Rev. B, 80 (2009), 195401

[6] A Avetisyan. et al., Phys. Rev. B, 81 (Stacking Order Dependent Electric Field Tuning of the Band Gap in Graphene Multilayers), 115432 | DOI

[7] N.M.R. Peres, R.M. Ribeiro, A.H. Castro Neto, “Excitonic Effects in the Optical Conductivity of Gated Graphene”, Phys. Rev. Lett., 105 (2010), 55501 | DOI

[8] C.-H. Park, S.G. Louie, “Tunable Excitons in Biased Bilayer Graphen”, Nano Lett., 10 (2010), 426 | DOI

[9] T.G. Pedersen, A.-P. Jauho, K. Pedersen, “Optical Response and Excitons in Gapped Graphene”, Phys. Rev. B, 79 (2009), 113406 | DOI

[10] H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed., World Scientific Publishing Co. Pte. Ltd., Singapore, 2009 | MR

[11] S.Y. Zhou, G.-H. Gweon, A.V Fedorov. et al., “Substrate-Induced Bandgap Opening in Epitaxial Graphene”, Nature Mater, 6 (2007), 770 | DOI

[12] S.H. Guo et al., “Analytic Solution of a Two-Dimensional Hydrogen Atom: II. Relativistic Theory”, Phys. Rev. A, 43 (1991), 1197 | DOI | MR