Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_1_a14, author = {M. K. Balyan}, title = {$\mathrm{X}$-ray third-order nonlinear {Renninger} effect and rocking curves}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {85--88}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a14/} }
TY - JOUR AU - M. K. Balyan TI - $\mathrm{X}$-ray third-order nonlinear Renninger effect and rocking curves JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 85 EP - 88 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a14/ LA - en ID - UZERU_2017_51_1_a14 ER -
%0 Journal Article %A M. K. Balyan %T $\mathrm{X}$-ray third-order nonlinear Renninger effect and rocking curves %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 85-88 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a14/ %G en %F UZERU_2017_51_1_a14
M. K. Balyan. $\mathrm{X}$-ray third-order nonlinear Renninger effect and rocking curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 85-88. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a14/
[1] S. Takagi, “A Dynamical Theory of Diffraction for a Distorted Crystal”, J. Phys. Soc. Jpn., 26 (1969), 1239–1253 | DOI
[2] M.K. Balyan, “$\mathrm{X}$-ray Third-Order Nonlinear Dynamical Diffraction in a Crystal”, Crystallography Reports, 60 (2015), 993–1000 | DOI
[3] M.K.Balyan, “$\mathrm{X}$-ray Third-Order Nonlinear Plane-Wave Bragg-Case Dynamical Diffraction Effects in a Perfect Crystal”, J. Synchrotron Rad., 22 (2015), 1410–1418 | DOI
[4] M.K. Balyan, “Third-Order Nonlinear and Linear Time-Dependent Dynamical Diffraction of $\mathrm{X}$-rays in Crystals”, J. Synchrotron Rad., 23 (2016), 919–928
[5] M.K. Balyan, “Diffraction of $\mathrm{X}$-ray Spatially Inhomogeneous Beam in a Crystal with Cubic Nonlinearity”, Journal of Contemp. Phys. (Armenian Ac. Sci.), 51 (2016), 391–397 | DOI
[6] M.K. Balyan, “$\mathrm{X}$-ray Plane Wave Dynamical Diffraction Effects in a Crystal with Third-Order Nonlinearity”, Crystallography Reports, 61 (2016), 1039–1046 | DOI
[7] A. Nazarkin, S. Podorov, I. Uschmann, E. Forster, R. Sauerbrey, “Nonlinear Optics in the Angstrom Regime: Hard- $\mathrm{X}$-ray Frequency Doubling in Perfect Crystals”, Phys. Rev. A, 67 (2003), 041804 (R) | DOI
[8] K.Tamasaku, T. Ishikawa, “Idler Energy Dependence of Nonlinear Diffraction in $X\to X +EUV$ Parametric Down-Conversion”, Acta Cryst. A, 63 (2007), 437–438 | DOI
[9] K.Tamasaku, T. Ishikawa, “Interference Between Compton Scattering and $\mathrm{X}$-ray Parametric Down-Conversion”, Phys. Rev. Lett., 98 (2007), 244801 | DOI
[10] C. Conti, A. Fratalotcchi, G. Ruocco, F. Sette, “Nonlinear Optics in the $\mathrm{X}$-ray Regime: Nonlinear Waves and Self-Action Effects”, Optics Express, 16 (2008), 8324–8331 | DOI
[11] A. Authier, Dynamical Theory of $\mathrm{X}$-ray Diffraction, Oxford University Press, UK, 2001
[12] R.W. Boyd, Nonlinear Optics, Academic Press, NY, 2003 | MR