Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_1_a11, author = {E. Sh. Mamasakhlisov and A. P. Antonyan and A. A. Akopyan}, title = {Effect of ligand binding on functionality of {DNA} field-effect transistor}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {66--70}, publisher = {mathdoc}, volume = {51}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a11/} }
TY - JOUR AU - E. Sh. Mamasakhlisov AU - A. P. Antonyan AU - A. A. Akopyan TI - Effect of ligand binding on functionality of DNA field-effect transistor JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 66 EP - 70 VL - 51 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a11/ LA - en ID - UZERU_2017_51_1_a11 ER -
%0 Journal Article %A E. Sh. Mamasakhlisov %A A. P. Antonyan %A A. A. Akopyan %T Effect of ligand binding on functionality of DNA field-effect transistor %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 66-70 %V 51 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a11/ %G en %F UZERU_2017_51_1_a11
E. Sh. Mamasakhlisov; A. P. Antonyan; A. A. Akopyan. Effect of ligand binding on functionality of DNA field-effect transistor. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 66-70. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a11/
[1] D. Ivnitski, I. Abdel-Hamid, P. Atanesov, E. Wilkins, “Biosensors for Detection of Pathogenic Bacteria”, Biosensors and Bioelectronics, 14 (1999), 599–624 | DOI
[2] J. Labuda, A.M.O. Brett, G. Evtugyn, M. Fojta, M. Mascini, M. Ozsoz, I. Palchetti, E. Palecek, J. Wang, “Electrochemical Nucleic Acid-Based Biosensors: Concepts, Terms and Methodology (IUPAC Technical Report)”, Pure Appl. Chem., 82 (2010), 1161–1187 | DOI
[3] J.H. Watterson, P.A.E. Piunno, U.J. Krull, “Towards the Optimization of an Optical DNA Sensor: Control of Selectivity Coefficients and Relative Surface Affinities”, Anal. Chem. Acta, 457 (2002), 29–38 | DOI
[4] A. Halperin, A. Buhot, E.B. Zhulina, “On the Hybridization Isotherms of DNA Microarrays: The Langmuir Model and Its Extensions”, J. Phys.: Condens. Matter., 18 (2006), S463–S490 | DOI
[5] G. Ananyan, A. Avetisyan, L. Aloyan, Ye. Dalyan, “The Stability of DNA–Porphyrin Complexes in the Presence of Mn(II) Ions”, Biophys. Chem., 156 (2011), 96–101 | DOI
[6] A.A. Ghazaryan Ye.B. Dalyan, S.G. Haroutiunian, A. Tikhomirova, T.V. Chalikian, “Thermodynamics of Interactions of Water-Soluble Porphyrins with RNA Duplexes”, J. Am. Chem. Soc., 128 (2006), 1914–1921 | DOI
[7] R.F. Pasternack, J.I. Goldsmith, S. Szep, E.J. Gibbs, “A Spectroscopic and Thermodynamic Study of Porphyrin/DNA Supramolecular Assemblies”, Biophys. J., 75 (1998), 1024–1031 | DOI
[8] P.O. Vardevanyan, A.P. Antonyan, L.A. Hambardzumyan, M.A. Shahinyan, A.T. Karapetian, “Thermodynamic Analysis of DNA Complexes with Methylene Blue, Ethidium Bromide and Hoechst 33258”, Biopolymers and Cell, 29:6 (2013), 515–520 | DOI
[9] D.M. Hinckley, G.S. Freeman, J.K. Whitmer, J.J. de Pablo, “An Experimentally-Informed Coarse-Grained 3-Site-Per-Nucleotide Model of DNA: Structure, Thermodynamics and Dynamics of Hybridization”, J. Chem. Phys., 139 (2013), 144903 | DOI
[10] D.M. Hinckley, J.P. Lequieu, J.J. de Pablo, “Coarse-Grained Modeling of DNA Oligomer Hybridization: Length, Sequence and Salt Effects”, J. Chem. Phys., 141 (2014), 35102 | DOI
[11] A.W. Peterson, R.J. Heaton, R.M. Georgiadis, “The Effect of Surface Probe Density on DNA Hybridization”, Nucl. Acids Res., 29 (2001), 5163–5168 | DOI
[12] A. Halperin, A. Buhot, E.B. Zhulina, “Sensitivity, Specificity and the Hybridization Isotherms of DNA Chips”, Biophys. J., 86 (2004), 718–730 | DOI
[13] M.F. Hagan, A.K. Chakraborty, “Hybridization Dynamics of Surface Immobilized DNA”, J. Chem. Phys., 120 (2004), 4958–4968 | DOI
[14] M.M.A. Seckar, W. Bloch, P.M.S. John, “Comparative Study of Sequence-Dependent Hybridization Kinetics in Solution and on Microspheres”, Nucleic Acids Res., 33 (2005), 366–375 | DOI
[15] N.V. Sorokin, D.Y. Yurasov, A.I. Cherepanov, J.M. Kozhekbaeva, V.R. Chechetkin, O.A. Gra, M.A. Livshits, T.V. Nasedkina, A.S. Zasedatelev, “Effects of External Transport on Discrimination between Perfect and Mismatch Duplexes on Gel-Based Oligonucleotide Microchips”, J. Biomol. Struct. Dyn., 24 (2007), 571–578 | DOI
[16] D. Irving, P. Gong, R. Levicky, “DNA Surface Hybridization: Comparison of Theory and Experiment”, J. Phys. Chem. B, 114 (2010), 7631–7640 | DOI
[17] T.J. Schmitt, T.A. Knotts, “IV. Thermodynamics of DNA Hybridization on Surfaces”, J. Chem. Phys., 134 (2011), 205105 | DOI
[18] S.M. Nelson, L.R. Ferguson, W.A. Denny, “Non-Covalent Ligand/DNA Interactions: Minor Groove Binding Agents”, Mutat. Res., 623 (2007), 24–40 | DOI
[19] V.V. Kostjukov, A.A.H. Santiago, F.R. Rodriquez, S.R. Castilla, J.A. Parkinson, M.P. Evsigneev, “Energetics of Ligand Binding to the DNA Minor Groove”, Phys. Chem. Chem. Phys., 14 (2012), 5588–5600 | DOI
[20] C.G. Ricci, P.A. Netz, “Docking Studies on DNA-Ligand Interactions: Building and Application of a Protocol to Identify the Binding Mode”, J. Chem. Inf. Model., 49 (2009), 1925–2935 | DOI
[21] C. Tanford, “Chemical Potential of Bound Ligand, an Important Parameter for Free Energy Transduction”, Proceed. Nat. Acad. USA, 78 (1981), 270–273 | DOI
[22] P. Pincus, “Colloid Stabilization with Grafted Polyelectrolytes”, Macromolecules, 24 (1991), 2912–2919 | DOI
[23] J. Wittmer, J.F. Joanny, “Charged Diblock Copolymers at Interfaces”, Macromolecules, 26 (1993), 2691–2697 | DOI
[24] O.V. Borisov, E.B. Zhulina, T.M. Birshtein, “Diagram of the States of a Grafted Polyelectrolyte Layer”, Macromolecules, 27 (1994), 4795–4803 | DOI
[25] I.Y. Wong, N.A. Melosh, “An Electrostatic Model for DNA Surface Hybridization”, Biophys. J., 98 (2010), 2954–2963 | DOI