Diamagnetism in the cylindrical quantum dot with parabolic confinement potential
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 20-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Diamagnetic properties of the electron gas in a cylindrical quantum dot with parabolic confinement potential have been investigated. The analytical expressions have been obtained for mean energy, mean magnetization and mean magnetic susceptibility of the electron gas. The diamagnetic character of such system has been shown.
Keywords: cylindrical quantum dot, quantum dot diamagnetism.
Mots-clés : parabolic confinement potential
@article{UZERU_2016_3_a3,
     author = {H. Ts. Ghaltaghchyan and E. M. Kazaryan and H. A. Sarkisyan},
     title = {Diamagnetism in the cylindrical quantum dot with parabolic confinement potential},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--24},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a3/}
}
TY  - JOUR
AU  - H. Ts. Ghaltaghchyan
AU  - E. M. Kazaryan
AU  - H. A. Sarkisyan
TI  - Diamagnetism in the cylindrical quantum dot with parabolic confinement potential
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 20
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a3/
LA  - en
ID  - UZERU_2016_3_a3
ER  - 
%0 Journal Article
%A H. Ts. Ghaltaghchyan
%A E. M. Kazaryan
%A H. A. Sarkisyan
%T Diamagnetism in the cylindrical quantum dot with parabolic confinement potential
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 20-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a3/
%G en
%F UZERU_2016_3_a3
H. Ts. Ghaltaghchyan; E. M. Kazaryan; H. A. Sarkisyan. Diamagnetism in the cylindrical quantum dot with parabolic confinement potential. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 20-24. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a3/

[1] W. Kohn, “Cyclotron Resonance and de Haas-van Alphen Oscillations of an Interacting Electron Gas”, Phys. Rev., 123:4 (1961), 1242

[2] L. Brey, N.F. Johnson, B.I. Halperin, “Optical and Magneto-Optical Absorption in Parabolic Quantum Wells”, Phys. Rev. B, 40:15 (1989), 10647 | MR

[3] P.A. Maksym, T. Chakraborty, “Quantum Dots in a Magnetic Field: Role of Electron-Electron Interactions”, Phys. Rev. Lett., 65 (1990), 108

[4] A.O. Govorov, A.V. Chaplik, “Magnetoabsorption at Quantum Points”, JETP Lett., 52 (1990), 31

[5] F.M. Peeters, “Magneto-Optics in Parabolic Quantum Dots”, Phys. Rev. B, 42:2 (1990), 1486

[6] S. Gumber, M. Kumar, M. Gambhir, M. Moban, P.K. Jha, “Thermal and Magnetic Properties of Cylindrical Quantum Dot with symmetric Confinement”, Can. J. Phys., 93:11 (2015), 1264 | MR

[7] B. Boyacioglu, A. Chatterjee, “Heat Capacity and Entropy of a GaAs Quantum Dot with Gaussian Confinement”, J. Appl. Phys., 112:8 (2012), 83514

[8] B. Boyacioglu, A. Chatterjee, “Low-dimensional Systems and Nanostructures”, Phys. E, 44:9 (2012), 1826

[9] A.K. Atayan, E.M. Kazaryan, A.V. Meliksetyan, H.A. Sarkisyan, “Magneto-Absorption in Cylindrical Quantum Dots”, Eur. Phys. J. B, 63:4 (2008), 485

[10] L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, v. 3, Butterworth–Heinemann, 1980 | MR