Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_3_a2, author = {T. S. Hakobyan and A. P. Nersessian}, title = {Coulomb systems with {Calogero} interaction}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {15--19}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a2/} }
TY - JOUR AU - T. S. Hakobyan AU - A. P. Nersessian TI - Coulomb systems with Calogero interaction JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 15 EP - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a2/ LA - en ID - UZERU_2016_3_a2 ER -
T. S. Hakobyan; A. P. Nersessian. Coulomb systems with Calogero interaction. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 15-19. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a2/
[1] F. Calogero, “Solution of a Three-Body Problem in One Dimension”, J. Math. Phys., 10 (1969), 2191 | DOI | MR
[2] F. Calogero, “Solution of the One-Dimensional N-Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials”, J. Math. Phys., 12 (1971), 419 | DOI | MR
[3] S. Wojciechowski, “Superintegrability of the Calogero–Moser System”, Phys. Lett. A, 95 (1983), 279 | DOI | MR
[4] M. Olshanetsky, A. Perelomov, “Classical Integrable Finite Dimensional Systems Related to Lie Algebras”, Phys. Rept., 71 (1981), 313 | DOI | MR
[5] A.P. Polychronakos, “Physics and Mathematics of Calogero Particles”, J. Phys. A, 39 (2006), 12793 | DOI | MR
[6] A. Khare, “Exact Solution of an N-Body Problem in One Dimension”, J. Phys. A, 29 (1996), L45 | DOI | MR
[7] T. Hakobyan, O. Lechtenfeld, A. Nersessian, “Superintegrability of Generalized Calogero Models with Oscillator or Coulomb Potential”, Phys. Rev. D, 90 (2014), 101701 | DOI
[8] T. Hakobyan, A. Nersessian, “Runge–Lenz Vector in Calogero–Coulomb Problem”, Phys. Rev. A, 92 (2015), 22111 | DOI
[9] T. Hakobyan, A. Nersessian, “Integrability and Separation of Variables in Calogero–Coulomb–Stark and Two-Center Calogero–Coulomb Systems”, Phys. Rev. D, 93 (2016), 45025 | DOI | MR
[10] C.F. Dunkl, “Differential-Difference Operators Associated to Reflection Groups”, Trans. Amer. Math. Soc., 311 (1989), 167 | DOI | MR
[11] M. Feigin, T. Hakobyan, “On Dunkl Angular Momenta Algebra”, JHEP, 11 (2015), 107 | DOI | MR
[12] M. Feigin, “Intertwining Relations for the Spherical Parts of Generalized Calogero Operators”, Theor. Math. Phys., 135 (2003), 497 | DOI | MR
[13] V.X. Genest, A. Lapointe, L. Vinet, “The Dunkl–Coulomb Problem in the Plane”, Phys. Lett. A, 379 (2015), 923 | DOI | MR
[14] T. Hakobyan, A. Nersessian, V. Yeghikyan, “Cuboctahedric Higgs Oscillator from the Calogero Model”, J. Phys. A., 42 (2009), 205206 | DOI | MR
[15] T. Hakobyan, O. Lechtenfeld, A. Nersessian, “The Spherical Sector of the Calogero Model as a Reduced Matrix Model”, Nucl. Phys. B, 858 (2012), 250 | DOI | MR
[16] P.J. Redmond, “Generalization of the Runge–Lenz Vector in the Presence of an Electric Field”, Phys. Rev. B, 133 (1964), 1352 | DOI | MR
[17] K. Helfrich, “Constants of Motion for Separable One-Particle Problems with Cylinder Symmetry”, Theoret. Chim. Acta (Berl.), 24 (1972), 271 | DOI
[18] M. Feigin, O. Lechtenfeld, A. Polychronakos, “The Quantum Angular Calogero–Moser Model”, JHEP, 1307 (2013), 162 | DOI | MR
[19] L. Landau, E. Lifshitz, Quantum Mechanics, Pergamon Press, Oxford, 1977