Analytical description of plasmon reflection from the free edges of metal slit structures
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 84-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider gap surface plasmon (GSP) propagation properties in slit milled in metal. Developed theoretical model allows to derive equations describing the reflection and transmission of the GSP from the free edge of semi-infinite slit or periodic array of semi-infinite slits in metallic host, analytically. Using these equations we calculate the transmitted power efficiency from the slit and from the array of slits. For the conditions when slit width ($d$) is very small compared to incident wavelength, the transmitted power efficiency is increased proportional with ${d}^{3/2}$, otherwise the dependence is linear. The relation of transmitted power through periodic array of slits to the transmitted power from single slit depends on slit period for the fixed wavelength. The derived equations give mathematical mechanism to calculate theoretical resonant length, losses and Q-factor of plasmon gap microresonator structures and can be used as a preliminary guideline upon designing plasmon gap microresonator.
Keywords: SPP resonator, sub-wavelength slit, array of slits.
@article{UZERU_2016_3_a14,
     author = {Kh. S. Sahakyan},
     title = {Analytical description of plasmon reflection from the free edges of metal slit structures},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {84--91},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a14/}
}
TY  - JOUR
AU  - Kh. S. Sahakyan
TI  - Analytical description of plasmon reflection from the free edges of metal slit structures
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 84
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a14/
LA  - en
ID  - UZERU_2016_3_a14
ER  - 
%0 Journal Article
%A Kh. S. Sahakyan
%T Analytical description of plasmon reflection from the free edges of metal slit structures
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 84-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a14/
%G en
%F UZERU_2016_3_a14
Kh. S. Sahakyan. Analytical description of plasmon reflection from the free edges of metal slit structures. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 84-91. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a14/

[1] H. Yokota, K. Saito, T. Yanagida, “Single Molecule Imaging of Fluorescently Labeled Proteins on Metal by Surface Plasmons in Aqueous Solution”, Phys. Rev. Lett., 80 (1998), 4606 | DOI

[2] B. Pettinger, B. Ren, G. Picardi, R. Schuster, G. Ertl, “Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy”, Phys. Rev. Lett., 92 (2004), 96101 | DOI

[3] M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range”, Phys. Rev. Lett., 100 (2008), 186804 | DOI

[4] L. Cao, D.N. Barsic, A.R. Guichard, M.L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires and Carbon Nanotubes”, Nano Lett., 7 (2007), 3523 | DOI

[5] T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, “Surface Plasmon Polariton Based Modulators and Switches Operating at Telecom Wavelengths”, Appl. Phys. Lett., 85 (2004), 5833 | DOI

[6] A. Hryciw, Y.C. Jun, M.L. Brongersma, “Electrifying Plasmonics on Silicon”, Nat. Mater., 9 (2010), 3 | DOI

[7] W Cai., J.S. White, M.L. Brongersma, “Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators”, Nano Lett., 9 (2009), 4403 | DOI

[8] H.T.Miyazaki, Y. Kurokawa, “Controlled Plasmon Resonance in Closed Metal/Insulator/Metal Nanocavities”, Appl. Phys. Lett., 89 (2006), 211126 | DOI

[9] Y.C. Jun , K.C.Y. Huang, M.L. Brongersma, “Plasmonic Beaming and Active Control over Fluorescent Emission”, Nat. Commun., 2 (2011), 283 | DOI

[10] P. Neutens,P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs, “The Name of the Cited Article”, The Name of Journal, 23:8 (1987), 1366–1376

[11] S.I. Bozhevolnyi , T. Søndergaard, “General Properties of Slow-Plasmon Resonant Nanostructures: Nano-Antennas and Resonators”, Opt. Express, 15 (2007), 10869 | DOI

[12] E.S. Barnard, J.S. White , A. Chandran, M.L. Brongersma, “Spectral Properties of Plasmonic Resonator Antennas”, Opt. Express, 16 (2008), 16529 | DOI

[13] H.A. Jamid, S.J. Albader, “Diffraction of Surface Plasmon-Polaritons in an Abruptly Terminated Dielectric-Metal Interface”, IEEE Photon. Tech. Lett., 7 (1995), 321 | DOI

[14] T. Leskova, N. Gapotchenko, “Fabry-Perot Type Interferrometer for Surface Polaritons: Resonance Effects”, Solid State Commun., 53 (1985), 351 | DOI

[15] E.S. Barnard, J.S. White , A. Chandran, M.L. Brongersma, “Spectral Properties of Plasmonic Resonator Antennas”, Opt. Express, 16 (2008), 16529 | DOI

[16] R. Gordon, “Light in a Subwavelength Slit in a Metal: Propagation and Reflection”, Phys. Rev. B, 73 (2006), 153405 | DOI