On a representation of the Riemann zeta function
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 35-38
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper a new representation of the Riemann zeta function in the disc $U(2,1)$ is obtained: $\zeta (z) = \dfrac{1}{z-1} + \displaystyle\sum_{n=0}^\infty (-1)^n\alpha_n(z-2)^n,$ where the coefficients $\alpha_k$ are real numbers tending to zero. Hence is obtained $\gamma=\displaystyle\lim_{m\rightarrow\infty} \left[\displaystyle\sum_{k=0}^{n-1} \dfrac{\zeta^{(k)}(2)}{k!}-n\right]$, where $\gamma$ is the Euler–Mascheroni constant.
Keywords:
Riemann function, entire function, power series.
Mots-clés : Euler–Mascheroni constant
Mots-clés : Euler–Mascheroni constant
@article{UZERU_2016_2_a5,
author = {Y{\cyre}. S. Mkrtchyan},
title = {On a representation of the {Riemann} zeta function},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {35--38},
year = {2016},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a5/}
}
Yе. S. Mkrtchyan. On a representation of the Riemann zeta function. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 35-38. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a5/
[1] S. G. Krantz, Handbook of Complex Variables, Birkhauser, Boston, MA, 1999, 158–160 | MR
[2] H. Hasse, “Ein Summiezungsverfahren fur die Riemannsche Zeta-Reihe”, Math. Z., 32 (1930), 458–489 | DOI | MR
[3] G. Szegö, “Tschebyscheff'sche Polynome und Nichtfortsetzbare Potenzreihen”, Math. Ann., 87 (1922), 90–111 | DOI | MR | Zbl
[4] L. Bieberbach, Analytische Fortsetzung, v. 3, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1955 | MR | Zbl