On the $P_1$ property of sequences of positive integers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce the concept of $P_1$ property of sequences, consisting of positive integers and prove two criteria revealing this property. First one deals with rather slow increasing sequences while the second one works for those sequences of positive integers which satisfy certain number theoretic condition. Additionally, we prove the unboundedness of common divisors of distinct terms of sequences of the form $(2^{2^n}+d)^{\infty}_{n=1}$ for integers $d\neq1.$
Keywords: Fermat's number, prime number, greatest common divisor, Chinese Remainder Theorem.
@article{UZERU_2016_2_a3,
     author = {T. L. Hakobyan},
     title = {On  the $P_1$  property of sequences of positive integers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--27},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/}
}
TY  - JOUR
AU  - T. L. Hakobyan
TI  - On  the $P_1$  property of sequences of positive integers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 22
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/
LA  - en
ID  - UZERU_2016_2_a3
ER  - 
%0 Journal Article
%A T. L. Hakobyan
%T On  the $P_1$  property of sequences of positive integers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 22-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/
%G en
%F UZERU_2016_2_a3
T. L. Hakobyan. On  the $P_1$  property of sequences of positive integers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 22-27. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/

[1] G. Polya, G. Szegö, Problems and Theorems in Analysis, v. I, II, Nauka, M., 1978 | MR

[2] Ch. Elsholtz, “Prime divisors of thin sequences”, The American Mathematical Monthly, 119:4 (2012), 331–333 | DOI | MR | Zbl

[3] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer, 1968 | MR | Zbl

[4] W. P. Manfred, “A Remark on an Inequality for the Number of Lattice Points in a Simplex”, SIAM Journal on Applied Mathematics, 20:4 (1971), 638–641 | DOI | Zbl