Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_2_a3, author = {T. L. Hakobyan}, title = {On the $P_1$ property of sequences of positive integers}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {22--27}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/} }
TY - JOUR AU - T. L. Hakobyan TI - On the $P_1$ property of sequences of positive integers JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 22 EP - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/ LA - en ID - UZERU_2016_2_a3 ER -
T. L. Hakobyan. On the $P_1$ property of sequences of positive integers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 22-27. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a3/
[1] G. Polya, G. Szegö, Problems and Theorems in Analysis, v. I, II, Nauka, M., 1978 | MR
[2] Ch. Elsholtz, “Prime divisors of thin sequences”, The American Mathematical Monthly, 119:4 (2012), 331–333 | DOI | MR | Zbl
[3] K. Chandrasekharan, Introduction to Analytic Number Theory, Springer, 1968 | MR | Zbl
[4] W. P. Manfred, “A Remark on an Inequality for the Number of Lattice Points in a Simplex”, SIAM Journal on Applied Mathematics, 20:4 (1971), 638–641 | DOI | Zbl