Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_2_a2, author = {N. T. Gapoyan}, title = {Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {15--21}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/} }
TY - JOUR AU - N. T. Gapoyan TI - Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 15 EP - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/ LA - en ID - UZERU_2016_2_a2 ER -
%0 Journal Article %A N. T. Gapoyan %T Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$ %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2016 %P 15-21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/ %G en %F UZERU_2016_2_a2
N. T. Gapoyan. Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 15-21. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
[1] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Harmonic Functions”, J. Reine Angew. Math., 299300 (1978), 256–279 | MR | Zbl
[2] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR
[3] A.I. Petrosyan, “Bounded Projections in Spaces of Functions Holomorphic in the Unit Ball”, J. Contemp. Math. Analysis (Izvestiya NAN Armenii, Matematika), 46:5 (2011), 264–272 | DOI | MR | Zbl
[4] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, NY, 1980 | MR
[5] A.I. Petrosyan, E.S. Mkrtchyan, “Duality in Some Spaces of Functions Harmonic in the Unit Ball”, Proceedings of the YSU. Physical $\$ Mathematical Sciences, 2013, no. 1, 29–36 | Zbl