@article{UZERU_2016_2_a2,
author = {N. T. Gapoyan},
title = {Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {15--21},
year = {2016},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/}
}
TY - JOUR
AU - N. T. Gapoyan
TI - Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$
JO - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY - 2016
SP - 15
EP - 21
IS - 2
UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
LA - en
ID - UZERU_2016_2_a2
ER -
%0 Journal Article
%A N. T. Gapoyan
%T Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 15-21
%N 2
%U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
%G en
%F UZERU_2016_2_a2
N. T. Gapoyan. Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 15-21. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
[1] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Harmonic Functions”, J. Reine Angew. Math., 299300 (1978), 256–279 | MR | Zbl
[2] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR
[3] A.I. Petrosyan, “Bounded Projections in Spaces of Functions Holomorphic in the Unit Ball”, J. Contemp. Math. Analysis (Izvestiya NAN Armenii, Matematika), 46:5 (2011), 264–272 | DOI | MR | Zbl
[4] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, NY, 1980 | MR
[5] A.I. Petrosyan, E.S. Mkrtchyan, “Duality in Some Spaces of Functions Harmonic in the Unit Ball”, Proceedings of the YSU. Physical $\$ Mathematical Sciences, 2013, no. 1, 29–36 | Zbl