Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Banach spaces $h_\infty (\varPhi)$, $h_0 (\varPhi)$ and $h^1(\eta) $ of functions, pluriharmonic in the unit ball in $\mathbb{C}^n$, depending on weight function $\varPhi$ and weighting measure $\eta$ are introduced. The question we consider is: for given $\varPhi$ we find a finite positive Borel measure $\eta$ on $[0,1)$ such that $h^1(\eta)^* $ $\thicksim$ $h_\infty (\varPhi)$ and $h_0 (\varPhi)^*$ $\thicksim$ $h^1(\eta)$.
Keywords: pluriharmonic function, unit ball in $\mathbb{C}^n$, duality, weighted spaces, projection, reproducing kernel.
@article{UZERU_2016_2_a2,
     author = {N. T. Gapoyan},
     title = {Duality in spaces of functions pluriharmonic in the unit ball in  $\mathbb{C}^n$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {15--21},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/}
}
TY  - JOUR
AU  - N. T. Gapoyan
TI  - Duality in spaces of functions pluriharmonic in the unit ball in  $\mathbb{C}^n$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 15
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
LA  - en
ID  - UZERU_2016_2_a2
ER  - 
%0 Journal Article
%A N. T. Gapoyan
%T Duality in spaces of functions pluriharmonic in the unit ball in  $\mathbb{C}^n$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 15-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/
%G en
%F UZERU_2016_2_a2
N. T. Gapoyan. Duality in spaces of functions pluriharmonic in the unit ball in  $\mathbb{C}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 15-21. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a2/

[1] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Harmonic Functions”, J. Reine Angew. Math., 299300 (1978), 256–279 | MR | Zbl

[2] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR

[3] A.I. Petrosyan, “Bounded Projections in Spaces of Functions Holomorphic in the Unit Ball”, J. Contemp. Math. Analysis (Izvestiya NAN Armenii, Matematika), 46:5 (2011), 264–272 | DOI | MR | Zbl

[4] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, NY, 1980 | MR

[5] A.I. Petrosyan, E.S. Mkrtchyan, “Duality in Some Spaces of Functions Harmonic in the Unit Ball”, Proceedings of the YSU. Physical $\$ Mathematical Sciences, 2013, no. 1, 29–36 | Zbl