@article{UZERU_2016_2_a1,
author = {S. A. Aghekyan},
title = {On a {Hilbert} problem in the half-plane in the class of continuous functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {9--14},
year = {2016},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a1/}
}
TY - JOUR AU - S. A. Aghekyan TI - On a Hilbert problem in the half-plane in the class of continuous functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 9 EP - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a1/ LA - en ID - UZERU_2016_2_a1 ER -
S. A. Aghekyan. On a Hilbert problem in the half-plane in the class of continuous functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 9-14. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a1/
[1] N.I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1963 | MR
[2] F.D. Gakhov, Boundary Value Problems, Dover, NY, 1990 | MR | Zbl
[3] H.M. Hayrapetyan , V.A. Babayan, “On Dirichlet Problem in the Weighted Space of Continuous Functions”, Belgorod State University Scientific Bulletin, 24:17 (2011) (in Russian)
[4] H.M. Hayrapetyan, V.A. Babayan, “On the Riemann-Hilbert Boundary Value Problem in the Space of Continuous Functions”, Belgorod State University Scientific Bulletin, 26:19 (2013) (in Russian)
[5] H.M. Hayrapetyan, V.Sh. Petrosyan, “Hilbert Boundary Value Problem by Means $L^1$ Convergence”, Proceedings of the NAS Armenia. Mathematics, 33:5 (1997), 18–31 (in Russian)
[6] H.M. Hayrapetyan, P.E. Meliksetyan, “Hilbert Boundary Value Problem in the HalfPlane for Weighted Spaces”, Proceedings of the NAS Armenia. Mathematics, 38:6 (2003), 17–32 (in Russian) | MR