A transcendence result for the equation $D y = a Dx$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Lindemann–Weierstrass theorem in differential setting for the differential equation $D y = a D x$ is proved, where $a$ is a non-constant parameter.
Keywords: abstract differential equation, Ax-Schanuel theorem, Lindemann–Weierstrass theorem.
@article{UZERU_2016_2_a0,
     author = {V. A. Aslanyan},
     title = {A transcendence result for the equation $D y = a Dx$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--8},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/}
}
TY  - JOUR
AU  - V. A. Aslanyan
TI  - A transcendence result for the equation $D y = a Dx$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 3
EP  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/
LA  - en
ID  - UZERU_2016_2_a0
ER  - 
%0 Journal Article
%A V. A. Aslanyan
%T A transcendence result for the equation $D y = a Dx$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 3-8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/
%G en
%F UZERU_2016_2_a0
V. A. Aslanyan. A transcendence result for the equation $D y = a Dx$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/

[1] S. Lang, Introduction to Transcendental Numbers, Science, Addison-Wesley Publishing Co., Berlin, 1966 | MR

[2] B. Zilber, “Pseudo-Exponentiation on Algebraically Closed Fields of Characteristic Zero”, Annals of Pure and Applied Logic, 132:1 (2004), 67–95 | DOI | MR

[3] J. Ax, “On Schanuel's Conjectures”, Annals of Mathematics, 93 (1971), 252–268 | DOI | MR | Zbl

[4] E. Kolchin, Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, 54, Academic Press, NY, 1973 | MR | Zbl

[5] I. Kaplansky, An Introduction to Differential Algebra, Publications de l'Institut de \linebreak Mathematique de l'Universite de Nancago, Paris, 1957 | MR | Zbl

[6] D. Marker, M. Messmer, A. Pillay, Model Theory of Fields, Lecture Notes in Logic, 5, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[7] A. Pillay, Applied Stability, Theory Lecture Notes, Paris, 2003

[8] D. Marker, Lecture Notes on Ax's Theorem, Lecture Notes, 1999

[9] J. Kirby, The Theory of Exponential Differential Equations, PhD Thesis, University of Oxford, 2006