A transcendence result for the equation $D y = a Dx$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Lindemann–Weierstrass theorem in differential setting for the differential equation $D y = a D x$ is proved, where $a$ is a non-constant parameter.
Keywords: abstract differential equation, Ax-Schanuel theorem, Lindemann–Weierstrass theorem.
@article{UZERU_2016_2_a0,
     author = {V. A. Aslanyan},
     title = {A transcendence result for the equation $D y = a Dx$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--8},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/}
}
TY  - JOUR
AU  - V. A. Aslanyan
TI  - A transcendence result for the equation $D y = a Dx$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 3
EP  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/
LA  - en
ID  - UZERU_2016_2_a0
ER  - 
%0 Journal Article
%A V. A. Aslanyan
%T A transcendence result for the equation $D y = a Dx$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 3-8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/
%G en
%F UZERU_2016_2_a0
V. A. Aslanyan. A transcendence result for the equation $D y = a Dx$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a0/