On a conjecture in bivariate interpolation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 30-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

Denote the space of all bivariate polynomials of total degree $\leq n$ by $\Pi_n$. We are interested in $n$-poised sets of nodes with the property that the fundamental polynomial of each node is a product of linear factors. In 1981 M. Gasca and J.I.Maeztu conjectured that every such set contains necessarily $n+1$ collinear nodes. Up to now this had been confirmed for degrees $n\leq5$. Here we bring a simple and short proof of the conjecture for $n=4$.
Keywords: poised, independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
@article{UZERU_2016_1_a4,
     author = {S. Z. Toroyan},
     title = {On a conjecture in bivariate interpolation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {30--34},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a4/}
}
TY  - JOUR
AU  - S. Z. Toroyan
TI  - On a conjecture in bivariate interpolation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 30
EP  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a4/
LA  - en
ID  - UZERU_2016_1_a4
ER  - 
%0 Journal Article
%A S. Z. Toroyan
%T On a conjecture in bivariate interpolation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 30-34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a4/
%G en
%F UZERU_2016_1_a4
S. Z. Toroyan. On a conjecture in bivariate interpolation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 30-34. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a4/

[1] D. Eisenbud, M. Green, J. Harris, “Cayley–Bacharach Theorems and Conjectures”, Bull. Amer. Math. Soc., 33 (1996), 295–324 | DOI | MR | Zbl

[2] H. Hakopian, K. Jetter, G. Zimmermann, “Vandermonde Matrices for Intersection Points of Curves”, Jaen J. Approx., 1 (2009), 67–81 | MR | Zbl

[3] M. Gasca, J. I. Maeztu, “On Lagrange and Hermite Interpolation in $\mathbb{R}^k $”, Numer. Math., 39 (1982), 1–14 | DOI | MR | Zbl

[4] H. Hakopian, K. Jetter, G. Zimmermann, “The Gasca–Maeztu Conjecture for $n = 5$”, Numer. Math., 127 (2014), 685–713 | DOI | MR | Zbl

[5] V. Bayramyan, H. Hakopian, S. Toroyan, “A Simple Proof of the Gasca–Maeztu Conjecture for $n=4$”, Jáen J. Approx. Theory, 7 (2015), 137–147

[6] J.R. Busch, “A Note on Lagrange Interpolation in $\mathbb{R}^2$”, Rev. Un. Mat. Argentina, 36 (1990), 33–38 | MR | Zbl