On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 22-29

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the sequence $\{a_{k}\}_{k=1}^{\infty},$ $a_{k}\searrow0$ with $\{a_{k}\}_{k=1}^{\infty}\notin l_{2},$ and Walsh system $\{W_{k}(x)\}_{k=0}^{\infty}$ be given. Then for any $\epsilon>0$ there exists a measurable set $E\subset\lbrack0,1]$ with measure $|E|>1-\epsilon$ and numbers $\delta_{k}=\pm1, 0$ such that for any $p\in\lbrack1,2]$ and each function $f(x)\in L^{p}(E)$ there exists a rearrangement $k\to\sigma(k)$ such that the series $\displaystyle\sum _{k=1}^{\infty}\delta_{\sigma(k)}a_{\sigma(k)}W_{\sigma(k)}(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.
Keywords: Walsh system, quasi universal series.
@article{UZERU_2016_1_a3,
     author = {R. G. Melikbekyan},
     title = {On quasi-universal {Walsh} series in $L^p_{[0,1]}$, $p\in[1,2]$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--29},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/}
}
TY  - JOUR
AU  - R. G. Melikbekyan
TI  - On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 22
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/
LA  - en
ID  - UZERU_2016_1_a3
ER  - 
%0 Journal Article
%A R. G. Melikbekyan
%T On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 22-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/
%G en
%F UZERU_2016_1_a3
R. G. Melikbekyan. On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 22-29. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/