Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_1_a3, author = {R. G. Melikbekyan}, title = {On quasi-universal {Walsh} series in $L^p_{[0,1]}$, $p\in[1,2]$}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {22--29}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/} }
TY - JOUR AU - R. G. Melikbekyan TI - On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$ JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 22 EP - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/ LA - en ID - UZERU_2016_1_a3 ER -
R. G. Melikbekyan. On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 22-29. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/
[1] D.E. Men’shov, “On the Partial Sums of Trigonometric Series”, Mat. Sbornik, 20:2 (1947), 197–238 (in Russian) | Zbl
[2] A.A. Talalyan, “On the Convergence Almost Everywhere of the Subsequences of Partial Sums of General Orthogonal Series”, Izv. AN Arm. SSR. Matematika, 10:3 (1975), 17–34 (in Russian) | MR
[3] A.A. Talalyan, “Representation of Measurable Functions by Series”, UMN, 15:5 (1960), 567–604 (in Russian) | MR
[4] M.G. Grigorian, “On the Representation of Functions by Orthogonal Series in Weighted $L^p$ Spaces”, Studia Math., 134:3 (1999), 207–216 | MR | Zbl
[5] G.G. Gevorkyan, K.A. Navasardyan, “On theWalsh Series with Monotone Coeffisients”, Izv. RAN, Math., 63 (1999), 41–60 | DOI | MR | Zbl
[6] M.G. Grigorian, “On the Systems Universal in $L^p[0;1], 1 \leq p 2$”, Izv. Vuzov. Matematika, 456:5 (2000), 19–22 | MR
[7] M.G. Grigorian, “Universal or Quasi Universal in $L^p[0;1]$ Orthogonal Series”, Journal of Contemporary Mathematical Analysis, 35:4 (2000), 44–64 | MR | Zbl
[8] K.A. Navasardyan, “On the Walsh Series with Monotone Coeffisients”, Izv. NAN Armenia, 42:5 (2007), 51–64 | MR | Zbl