On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 22-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the sequence $\{a_{k}\}_{k=1}^{\infty},$ $a_{k}\searrow0$ with $\{a_{k}\}_{k=1}^{\infty}\notin l_{2},$ and Walsh system $\{W_{k}(x)\}_{k=0}^{\infty}$ be given. Then for any $\epsilon>0$ there exists a measurable set $E\subset\lbrack0,1]$ with measure $|E|>1-\epsilon$ and numbers $\delta_{k}=\pm1, 0$ such that for any $p\in\lbrack1,2]$ and each function $f(x)\in L^{p}(E)$ there exists a rearrangement $k\to\sigma(k)$ such that the series $\displaystyle\sum _{k=1}^{\infty}\delta_{\sigma(k)}a_{\sigma(k)}W_{\sigma(k)}(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.
Keywords: Walsh system, quasi universal series.
@article{UZERU_2016_1_a3,
     author = {R. G. Melikbekyan},
     title = {On quasi-universal {Walsh} series in $L^p_{[0,1]}$, $p\in[1,2]$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--29},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/}
}
TY  - JOUR
AU  - R. G. Melikbekyan
TI  - On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 22
EP  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/
LA  - en
ID  - UZERU_2016_1_a3
ER  - 
%0 Journal Article
%A R. G. Melikbekyan
%T On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 22-29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/
%G en
%F UZERU_2016_1_a3
R. G. Melikbekyan. On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 22-29. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a3/

[1] D.E. Men’shov, “On the Partial Sums of Trigonometric Series”, Mat. Sbornik, 20:2 (1947), 197–238 (in Russian) | Zbl

[2] A.A. Talalyan, “On the Convergence Almost Everywhere of the Subsequences of Partial Sums of General Orthogonal Series”, Izv. AN Arm. SSR. Matematika, 10:3 (1975), 17–34 (in Russian) | MR

[3] A.A. Talalyan, “Representation of Measurable Functions by Series”, UMN, 15:5 (1960), 567–604 (in Russian) | MR

[4] M.G. Grigorian, “On the Representation of Functions by Orthogonal Series in Weighted $L^p$ Spaces”, Studia Math., 134:3 (1999), 207–216 | MR | Zbl

[5] G.G. Gevorkyan, K.A. Navasardyan, “On theWalsh Series with Monotone Coeffisients”, Izv. RAN, Math., 63 (1999), 41–60 | DOI | MR | Zbl

[6] M.G. Grigorian, “On the Systems Universal in $L^p[0;1], 1 \leq p 2$”, Izv. Vuzov. Matematika, 456:5 (2000), 19–22 | MR

[7] M.G. Grigorian, “Universal or Quasi Universal in $L^p[0;1]$ Orthogonal Series”, Journal of Contemporary Mathematical Analysis, 35:4 (2000), 44–64 | MR | Zbl

[8] K.A. Navasardyan, “On the Walsh Series with Monotone Coeffisients”, Izv. NAN Armenia, 42:5 (2007), 51–64 | MR | Zbl