Laser induced thermomechanical effect in hybrid oriented liquid crystal
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 42-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper laser induced thermomechanical flow and oscillations in hybrid oriented nematic liquid crystals (NLC) are theoretically predicted. The effect is conditioned by the hydrodynamic flow tendency to reduce the curvature of the "flexible ribbon" of hybrid NLC.
Keywords: nematic liquid crystals, thermomechanics, heat flux.
@article{UZERU_2015_3_a6,
     author = {M. R. Hakobyan},
     title = {Laser induced thermomechanical effect in hybrid oriented liquid crystal},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {42--48},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/}
}
TY  - JOUR
AU  - M. R. Hakobyan
TI  - Laser induced thermomechanical effect in hybrid oriented liquid crystal
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 42
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/
LA  - en
ID  - UZERU_2015_3_a6
ER  - 
%0 Journal Article
%A M. R. Hakobyan
%T Laser induced thermomechanical effect in hybrid oriented liquid crystal
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 42-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/
%G en
%F UZERU_2015_3_a6
M. R. Hakobyan. Laser induced thermomechanical effect in hybrid oriented liquid crystal. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 42-48. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/

[1] O. Lehmann, “Struktur, System und Magnetisches Verhalten Flüssiger Krystalle und Deren Mischbarkeit mit Festen”, Ann. Physik, 306:4 (1900), 649 | DOI

[2] F.M. Leslie, “Some Thermal Effects in Cholesteric Liquid Crystals”, Proc. Roy. Soc. A, 307 (1968), 359 | DOI

[3] N. Éber, I. Janossy, “An Experiment on the Thermomechanical Coupling in Cholesterics”, MCLC Lett., 72 (1982), 233

[4] G.S. Ranganath, “Thermomechanical Effects in Cholesteric Liquid Crystals”, MCLC, 92 (1983), 105

[5] F.M. Leslie, “Thermo-Mechanical Effects in Cholesteric Liquid Crystals”, J. Non-Equilib. Thermodyn., 11 (1986), 23 | DOI | Zbl

[6] N. Éber, I. Janossy, Proc 4th Liquid Crystal Conf of the Socialist Countries, v. 11, USSR, Tbilisi, 1981, 125

[7] J. Janossy, “Diffuso-Mechanical Coupling in Cholesteric Liquid Crystals”, J. Physique Lett., 42 (1981), 41–43 | DOI

[8] N. Éber, I. Janossy, Proc 5th Liquid Crystal Conf of the Socialist Countries, v. 1, USSR, Odessa, 1983, 92

[9] H.K. Jayaram, U.D. Kini, G.S. Ranganath, S. Chandrasekhar, “Thermomechanical Effect in Cholesteric Liquid Crystals”, MCLC, 99 (1983), 155–160

[10] S. Sarman, “Molecular Theory of Thermomechanical Coupling in Cholesteric Liquid Crystals”, J. of Chem. Phys., 110:24 (1999), 12218–12225 | DOI

[11] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, England, Cambridge, 1980

[12] N.Éber, I. Janossy, “Thermomechanical Coupling in Compensated Cholesterics”, MCLC, 102:10 (1984), 311–316

[13] H. Pleiner, H.R. Brand, “Macroscopic Description of Compensated Cholesteric and Chiral Smectic Liquid Crystals”, MCLC Lett., 5:2 (1987), 61–65

[14] H. Pleiner, H.R. Brand, “Thermomechanical Coupling in Compensated Cholesteric and Chiral Smectic Liquid Crystals”, MCLC Lett., 5:5 (1988), 183–186

[15] H.R. Brand, H. Pleiner, “New Theoretical Results for the Lehmann Effect in Cholesteric Liquid Crystals”, Phys. Rev. A, 37 (1988), 2736–2738 | DOI | MR

[16] N. Éber, I. Janossy, “Note on "Macroscopic Description of Compensated Cholesteric and Chiral Smectic Liquid Crystals””, MCLC Lett., 5:3 (1988), 81–86

[17] P. Oswald, Pieranski P., Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, Taylor $\$ Francis, CRC Press, Boca Raton, 2005

[18] A. Dequidt, P. Oswald, “Lehmann Effect in Compensated Cholesteric Liquid Crystals”, EPL, 80 (2007), 26001 | DOI

[19] P. Oswald, A. Dequidt, “Direct Measurement of the Thermomechanical Lehmann Coefficient in a Compensated Cholesteric Liquid Crystal”, EPL, 83 (2008), 16005 | DOI | MR

[20] A. Dequidt, A. Źywociński, P. Oswald, “Lehmann Effect in a Compensated Cholesteric Liquid Crystal: Experimental Evidence with Fixed and Gliding Boundary Conditions”, EPJE, 25 (2008), 277–289 | DOI

[21] P. Oswald, “Lehmann Rotation of Cholesteric Droplets Subjected to a Temperature Gradient: Role of the Concentration of Chiral Molecules”, EPJE, 28 (2009), 377–383 | DOI

[22] P. Oswald, A. Dequidt, “Thermomechanically Driven Spirals in a Cholesteric Liquid Crystal”, Phys. Rev. E, 77:5 (2008), 051706–711 | DOI

[23] H. Pleiner, H.R. Brand, “Comment on "Direct Measurement of the Thermomechanical Lehmann Coefficient in a Compensated Cholesteric Liquid Crystal” by Oswald P. $\$ Dequidt A.”, EPL, 89 (2010), 26003 | DOI

[24] P. Oswald, L. Jørgensen, A. Źywociński, “Lehmann Rotatory Power: A New Concept in Cholesteric Liquid Crystals”, Liquid Crystals, 38:5 (2011), 601–613 | DOI

[25] P. Oswald, “About the Leslie Explanation of the Lehmann Effect in Cholesteric Liquid Crystals”, EPL, 97 (2012), 36006 | DOI

[26] R.S. Akopyan, B.Ya. Zeldovich, “Thermomechanical Effects in Deformed Nematics”, Sov. Phys. JETPh, 60:5 (1984), 953 (in Russian)

[27] H.R. Brand, H. Pleiner, “Nonlinear Effects in The Electrohydrodynamics of Uniaxial Nematic Liquid Crystals”, Phys. Rev. A, 35:7 (1987), 3122 | DOI

[28] O.D. Lavrentovich, Yu.A. Nastishin, “Thermomechanical Effect in Thedeformed Nematic Liquid Crystal”, Ukr. Fiz. Zhurn., 32:5 (1987), 710 (in Russian)

[29] R.S. Akopyan, R.B. Alaverdian, E.A. Santrosian, Yu.S. Chilingarian, “Thermomechanical Effect in Hybrid-Oriented Nematic Liquid Crystal”, Pis’ma v ZhTF, 23:17 (1997), 77 (in Russian)

[30] R.S. Akopyan, R.B. Alaverdian, E.A. Santrosian, S.T. Nersisian, Yu.S. Chilingarian, “Thermomechanical Effect in a Planar Nematic Liquid Crystal Induced by a Quasi-Static Electric Field”, ZhTF, 69:4 (1999), 122 (in Russian)

[31] A.V. Zakharov, A.A. Vakulenko, “Orientational Dynamics of the Compressible Nematic Liquid Crystals Induced by a Temperature Gradient”, Phys. Rev. E, 79 (2009), 11708 | DOI

[32] A.V. Zakharov, A.A. Vakulenko, “Director Reorientation in a Hybrid-Oriented Liquid-Crystal Film Induced by Thermomechanical Effect”, Phys. Rev. E, 80 (2009), 31711 | DOI

[33] S.I. Trashkeev, A.V. Britvin, “Thermal Orientation Effect in a Nematic Liquid Crystal”, Tech. Phys., 56:6 (2011), 747–753 | DOI

[34] E.I Demenev, G.A. Pozdnyakov, S.I. Trashkeev, “Nonlinear Orientational Interaction of a Nematic Liquid Crystal with a Heat Flux”, Tech. Phys. Lett., 35 (2009), 674–677 | DOI

[35] R. Montazami, C.M. Spillmann, J. Naciri, B.R. Ratna, “Enhanced Thermomechanical Properties of a Nematic Liquid Crystal Elastomer Doped with Gold Nanoparticles”, Sensors and Actuators A: Physical, 178 (2012), 175–178 | DOI

[36] R.S. Akopyan, R.B. Alaverdian, Yu.S. Chilingarian, E.A. Santrosian, “Thermomechanical Effects in the Nematic Liquid Crystals”, J. Appl. Phys., 90 (2001), 3371 | DOI

[37] R.S. Akopyan, G.L. Yesayan B.Ya. Zel’dovich, “Thermomechanical Oscillations in Hybrid Nematic Liquid Crystals”, Phys. Rev. E, 73 (2006), 61707 | DOI

[38] R.S. Akopyan, B.Ya. Zel’dovich, “Light Reorientation of the Director of Liquid Crystal Near the Threshold Spatially Periodic Convective Instability”, Sov. Phys. JETPh, 59 (1984), 311 (in Russian)