Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2015_3_a6, author = {M. R. Hakobyan}, title = {Laser induced thermomechanical effect in hybrid oriented liquid crystal}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {42--48}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/} }
TY - JOUR AU - M. R. Hakobyan TI - Laser induced thermomechanical effect in hybrid oriented liquid crystal JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 42 EP - 48 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/ LA - en ID - UZERU_2015_3_a6 ER -
%0 Journal Article %A M. R. Hakobyan %T Laser induced thermomechanical effect in hybrid oriented liquid crystal %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2015 %P 42-48 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/ %G en %F UZERU_2015_3_a6
M. R. Hakobyan. Laser induced thermomechanical effect in hybrid oriented liquid crystal. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 42-48. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a6/
[1] O. Lehmann, “Struktur, System und Magnetisches Verhalten Flüssiger Krystalle und Deren Mischbarkeit mit Festen”, Ann. Physik, 306:4 (1900), 649 | DOI
[2] F.M. Leslie, “Some Thermal Effects in Cholesteric Liquid Crystals”, Proc. Roy. Soc. A, 307 (1968), 359 | DOI
[3] N. Éber, I. Janossy, “An Experiment on the Thermomechanical Coupling in Cholesterics”, MCLC Lett., 72 (1982), 233
[4] G.S. Ranganath, “Thermomechanical Effects in Cholesteric Liquid Crystals”, MCLC, 92 (1983), 105
[5] F.M. Leslie, “Thermo-Mechanical Effects in Cholesteric Liquid Crystals”, J. Non-Equilib. Thermodyn., 11 (1986), 23 | DOI | Zbl
[6] N. Éber, I. Janossy, Proc 4th Liquid Crystal Conf of the Socialist Countries, v. 11, USSR, Tbilisi, 1981, 125
[7] J. Janossy, “Diffuso-Mechanical Coupling in Cholesteric Liquid Crystals”, J. Physique Lett., 42 (1981), 41–43 | DOI
[8] N. Éber, I. Janossy, Proc 5th Liquid Crystal Conf of the Socialist Countries, v. 1, USSR, Odessa, 1983, 92
[9] H.K. Jayaram, U.D. Kini, G.S. Ranganath, S. Chandrasekhar, “Thermomechanical Effect in Cholesteric Liquid Crystals”, MCLC, 99 (1983), 155–160
[10] S. Sarman, “Molecular Theory of Thermomechanical Coupling in Cholesteric Liquid Crystals”, J. of Chem. Phys., 110:24 (1999), 12218–12225 | DOI
[11] S. Chandrasekhar, Liquid Crystals, Cambridge University Press, England, Cambridge, 1980
[12] N.Éber, I. Janossy, “Thermomechanical Coupling in Compensated Cholesterics”, MCLC, 102:10 (1984), 311–316
[13] H. Pleiner, H.R. Brand, “Macroscopic Description of Compensated Cholesteric and Chiral Smectic Liquid Crystals”, MCLC Lett., 5:2 (1987), 61–65
[14] H. Pleiner, H.R. Brand, “Thermomechanical Coupling in Compensated Cholesteric and Chiral Smectic Liquid Crystals”, MCLC Lett., 5:5 (1988), 183–186
[15] H.R. Brand, H. Pleiner, “New Theoretical Results for the Lehmann Effect in Cholesteric Liquid Crystals”, Phys. Rev. A, 37 (1988), 2736–2738 | DOI | MR
[16] N. Éber, I. Janossy, “Note on "Macroscopic Description of Compensated Cholesteric and Chiral Smectic Liquid Crystals””, MCLC Lett., 5:3 (1988), 81–86
[17] P. Oswald, Pieranski P., Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments, Taylor $\$ Francis, CRC Press, Boca Raton, 2005
[18] A. Dequidt, P. Oswald, “Lehmann Effect in Compensated Cholesteric Liquid Crystals”, EPL, 80 (2007), 26001 | DOI
[19] P. Oswald, A. Dequidt, “Direct Measurement of the Thermomechanical Lehmann Coefficient in a Compensated Cholesteric Liquid Crystal”, EPL, 83 (2008), 16005 | DOI | MR
[20] A. Dequidt, A. Źywociński, P. Oswald, “Lehmann Effect in a Compensated Cholesteric Liquid Crystal: Experimental Evidence with Fixed and Gliding Boundary Conditions”, EPJE, 25 (2008), 277–289 | DOI
[21] P. Oswald, “Lehmann Rotation of Cholesteric Droplets Subjected to a Temperature Gradient: Role of the Concentration of Chiral Molecules”, EPJE, 28 (2009), 377–383 | DOI
[22] P. Oswald, A. Dequidt, “Thermomechanically Driven Spirals in a Cholesteric Liquid Crystal”, Phys. Rev. E, 77:5 (2008), 051706–711 | DOI
[23] H. Pleiner, H.R. Brand, “Comment on "Direct Measurement of the Thermomechanical Lehmann Coefficient in a Compensated Cholesteric Liquid Crystal” by Oswald P. $\$ Dequidt A.”, EPL, 89 (2010), 26003 | DOI
[24] P. Oswald, L. Jørgensen, A. Źywociński, “Lehmann Rotatory Power: A New Concept in Cholesteric Liquid Crystals”, Liquid Crystals, 38:5 (2011), 601–613 | DOI
[25] P. Oswald, “About the Leslie Explanation of the Lehmann Effect in Cholesteric Liquid Crystals”, EPL, 97 (2012), 36006 | DOI
[26] R.S. Akopyan, B.Ya. Zeldovich, “Thermomechanical Effects in Deformed Nematics”, Sov. Phys. JETPh, 60:5 (1984), 953 (in Russian)
[27] H.R. Brand, H. Pleiner, “Nonlinear Effects in The Electrohydrodynamics of Uniaxial Nematic Liquid Crystals”, Phys. Rev. A, 35:7 (1987), 3122 | DOI
[28] O.D. Lavrentovich, Yu.A. Nastishin, “Thermomechanical Effect in Thedeformed Nematic Liquid Crystal”, Ukr. Fiz. Zhurn., 32:5 (1987), 710 (in Russian)
[29] R.S. Akopyan, R.B. Alaverdian, E.A. Santrosian, Yu.S. Chilingarian, “Thermomechanical Effect in Hybrid-Oriented Nematic Liquid Crystal”, Pis’ma v ZhTF, 23:17 (1997), 77 (in Russian)
[30] R.S. Akopyan, R.B. Alaverdian, E.A. Santrosian, S.T. Nersisian, Yu.S. Chilingarian, “Thermomechanical Effect in a Planar Nematic Liquid Crystal Induced by a Quasi-Static Electric Field”, ZhTF, 69:4 (1999), 122 (in Russian)
[31] A.V. Zakharov, A.A. Vakulenko, “Orientational Dynamics of the Compressible Nematic Liquid Crystals Induced by a Temperature Gradient”, Phys. Rev. E, 79 (2009), 11708 | DOI
[32] A.V. Zakharov, A.A. Vakulenko, “Director Reorientation in a Hybrid-Oriented Liquid-Crystal Film Induced by Thermomechanical Effect”, Phys. Rev. E, 80 (2009), 31711 | DOI
[33] S.I. Trashkeev, A.V. Britvin, “Thermal Orientation Effect in a Nematic Liquid Crystal”, Tech. Phys., 56:6 (2011), 747–753 | DOI
[34] E.I Demenev, G.A. Pozdnyakov, S.I. Trashkeev, “Nonlinear Orientational Interaction of a Nematic Liquid Crystal with a Heat Flux”, Tech. Phys. Lett., 35 (2009), 674–677 | DOI
[35] R. Montazami, C.M. Spillmann, J. Naciri, B.R. Ratna, “Enhanced Thermomechanical Properties of a Nematic Liquid Crystal Elastomer Doped with Gold Nanoparticles”, Sensors and Actuators A: Physical, 178 (2012), 175–178 | DOI
[36] R.S. Akopyan, R.B. Alaverdian, Yu.S. Chilingarian, E.A. Santrosian, “Thermomechanical Effects in the Nematic Liquid Crystals”, J. Appl. Phys., 90 (2001), 3371 | DOI
[37] R.S. Akopyan, G.L. Yesayan B.Ya. Zel’dovich, “Thermomechanical Oscillations in Hybrid Nematic Liquid Crystals”, Phys. Rev. E, 73 (2006), 61707 | DOI
[38] R.S. Akopyan, B.Ya. Zel’dovich, “Light Reorientation of the Director of Liquid Crystal Near the Threshold Spatially Periodic Convective Instability”, Sov. Phys. JETPh, 59 (1984), 311 (in Russian)