Interval non-total colorable graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 37-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with colors $1,2,\dots,t$ such that all colors are used, and the edges incident to each vertex $v$ together with $v$ are colored by $d_G(v)+ 1$ consecutive colors, where $d_G(v)$ is the degree of a vertex $v$ in $G$. In this paper we describe some methods for constructing of graphs that have no interval total coloring.
Keywords: total coloring, interval total coloring, interval coloring.
@article{UZERU_2015_3_a5,
     author = {N. A. Khachatryan},
     title = {Interval non-total colorable graphs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {37--41},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/}
}
TY  - JOUR
AU  - N. A. Khachatryan
TI  - Interval non-total colorable graphs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 37
EP  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/
LA  - en
ID  - UZERU_2015_3_a5
ER  - 
%0 Journal Article
%A N. A. Khachatryan
%T Interval non-total colorable graphs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 37-41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/
%G en
%F UZERU_2015_3_a5
N. A. Khachatryan. Interval non-total colorable graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 37-41. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/

[1] P.A. Petrosyan, “Interval Total Colorings of Complete Bipartite Graphs”, Proceedings of the CSIT Conference, Yer., 2007, 84–85

[2] A.S. Asratian, T.M.J. Denley, R. Häggkvist, Bipartite Graphs and Their Applications, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[3] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001 | MR

[4] H.P. Yap, Total Colorings of Graphs, Lecture Notes in Mathematics, 1623, Springer-Verlag, 1996 | MR

[5] P.A. Petrosyan, “Interval Total Colorings of Certain Graphs”, Mathematical Problems of Computer Science, 31 (2008), 122–129

[6] P.A. Petrosyan, N.A. Khachatryan, “Interval Total Colorings of Complete Multipartite Graphs and Hypercubes”, Mathematical Problems of Computer Science, 42 (2014), 28–42

[7] P.A. Petrosyan, A.S.Shashikyan, “On Interval Total Colorings of Trees”, Mathematical Problems of Computer Science, 32 (2009), 70–73

[8] P.A. Petrosyan, A.S.Shashikyan, “On Interval Total Colorings of Bipartite Graphs”, Proceedings of the CSIT Conference, Yer., 2009, 95–98

[9] P.A. Petrosyan, A.S.Shashikyan., A.Yu. Torosyan, “Interval Total Colorings of Bipartite Graphs”, Proceedings of the 9th Cologne-Twente Workshop on Graphs and Combinatorial Optimization Germany, Cologne, 2010, 133–136

[10] A.S. Shashikyan, On Interval Total Colorings of Bipartite Graphs, PhD Thesis, YSU Press, Yer., 2009, 29 pp.