Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2015_3_a5, author = {N. A. Khachatryan}, title = {Interval non-total colorable graphs}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {37--41}, publisher = {mathdoc}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/} }
N. A. Khachatryan. Interval non-total colorable graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 37-41. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a5/
[1] P.A. Petrosyan, “Interval Total Colorings of Complete Bipartite Graphs”, Proceedings of the CSIT Conference, Yer., 2007, 84–85
[2] A.S. Asratian, T.M.J. Denley, R. Häggkvist, Bipartite Graphs and Their Applications, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[3] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 2001 | MR
[4] H.P. Yap, Total Colorings of Graphs, Lecture Notes in Mathematics, 1623, Springer-Verlag, 1996 | MR
[5] P.A. Petrosyan, “Interval Total Colorings of Certain Graphs”, Mathematical Problems of Computer Science, 31 (2008), 122–129
[6] P.A. Petrosyan, N.A. Khachatryan, “Interval Total Colorings of Complete Multipartite Graphs and Hypercubes”, Mathematical Problems of Computer Science, 42 (2014), 28–42
[7] P.A. Petrosyan, A.S.Shashikyan, “On Interval Total Colorings of Trees”, Mathematical Problems of Computer Science, 32 (2009), 70–73
[8] P.A. Petrosyan, A.S.Shashikyan, “On Interval Total Colorings of Bipartite Graphs”, Proceedings of the CSIT Conference, Yer., 2009, 95–98
[9] P.A. Petrosyan, A.S.Shashikyan., A.Yu. Torosyan, “Interval Total Colorings of Bipartite Graphs”, Proceedings of the 9th Cologne-Twente Workshop on Graphs and Combinatorial Optimization Germany, Cologne, 2010, 133–136
[10] A.S. Shashikyan, On Interval Total Colorings of Bipartite Graphs, PhD Thesis, YSU Press, Yer., 2009, 29 pp.