On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 23-30
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the boundedness of Bergman type integral operators in mixed norm spaces over the unit ball of $ \mathbb{R}^n$. Bounded harmonic projections are found in the mixed norm and Lipschitz spaces. Corresponding Forelli–Rudin type theorems are proved.
Keywords:
unit ball in $ \mathbb{R}^n$, harmonic function, mixed norm space, Bergman space, Bergman operator, projection, Lipschitz space.
@article{UZERU_2015_3_a3,
author = {Ye. G. Tonoyan},
title = {On integral operators of {Bergman} type on the unit ball of $ \mathbb{R}^n$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {23--30},
publisher = {mathdoc},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/}
}
TY - JOUR
AU - Ye. G. Tonoyan
TI - On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
JO - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY - 2015
SP - 23
EP - 30
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/
LA - en
ID - UZERU_2015_3_a3
ER -
%0 Journal Article
%A Ye. G. Tonoyan
%T On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 23-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/
%G en
%F UZERU_2015_3_a3
Ye. G. Tonoyan. On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 23-30. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/