On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 23-30

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the boundedness of Bergman type integral operators in mixed norm spaces over the unit ball of $ \mathbb{R}^n$. Bounded harmonic projections are found in the mixed norm and Lipschitz spaces. Corresponding Forelli–Rudin type theorems are proved.
Keywords: unit ball in $ \mathbb{R}^n$, harmonic function, mixed norm space, Bergman space, Bergman operator, projection, Lipschitz space.
@article{UZERU_2015_3_a3,
     author = {Ye. G. Tonoyan},
     title = {On integral operators of {Bergman} type on the unit ball of $ \mathbb{R}^n$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {23--30},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/}
}
TY  - JOUR
AU  - Ye. G. Tonoyan
TI  - On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 23
EP  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/
LA  - en
ID  - UZERU_2015_3_a3
ER  - 
%0 Journal Article
%A Ye. G. Tonoyan
%T On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 23-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/
%G en
%F UZERU_2015_3_a3
Ye. G. Tonoyan. On integral operators of Bergman type on the unit ball of $ \mathbb{R}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 23-30. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a3/