On the minimal number of nodes uniquely determining algebraic curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 17-22

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that the number of $n$-independent nodes determining uniquely the curve of degree $n$ passing through them equals to $N-1$, where $N=\dfrac{1}{2}(n+1)(n+2)$. It was proved in [1], that the minimal number of $n$-independent nodes determining uniquely the curve of degree $n-1$ equals to $N-4$. The paper also posed a conjecture concerning the analogous problem for general degree $k\leq n$. In the present paper the conjecture is proved, establishing that the minimal number of $n$-independent nodes determining uniquely the curve of degree $k\leq n$ equals to $\dfrac{(k-1)(2n+4-k)}{2}+2$.
Keywords: poised, independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
@article{UZERU_2015_3_a2,
     author = {H. A. Hakopian and S. Z. Toroyan},
     title = {On the minimal number of nodes uniquely determining algebraic curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--22},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/}
}
TY  - JOUR
AU  - H. A. Hakopian
AU  - S. Z. Toroyan
TI  - On the minimal number of nodes uniquely determining algebraic curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 17
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/
LA  - en
ID  - UZERU_2015_3_a2
ER  - 
%0 Journal Article
%A H. A. Hakopian
%A S. Z. Toroyan
%T On the minimal number of nodes uniquely determining algebraic curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 17-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/
%G en
%F UZERU_2015_3_a2
H. A. Hakopian; S. Z. Toroyan. On the minimal number of nodes uniquely determining algebraic curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 17-22. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/