On the minimal number of nodes uniquely determining algebraic curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that the number of $n$-independent nodes determining uniquely the curve of degree $n$ passing through them equals to $N-1$, where $N=\dfrac{1}{2}(n+1)(n+2)$. It was proved in [1], that the minimal number of $n$-independent nodes determining uniquely the curve of degree $n-1$ equals to $N-4$. The paper also posed a conjecture concerning the analogous problem for general degree $k\leq n$. In the present paper the conjecture is proved, establishing that the minimal number of $n$-independent nodes determining uniquely the curve of degree $k\leq n$ equals to $\dfrac{(k-1)(2n+4-k)}{2}+2$.
Keywords: poised, independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
@article{UZERU_2015_3_a2,
     author = {H. A. Hakopian and S. Z. Toroyan},
     title = {On the minimal number of nodes uniquely determining algebraic curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--22},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/}
}
TY  - JOUR
AU  - H. A. Hakopian
AU  - S. Z. Toroyan
TI  - On the minimal number of nodes uniquely determining algebraic curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 17
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/
LA  - en
ID  - UZERU_2015_3_a2
ER  - 
%0 Journal Article
%A H. A. Hakopian
%A S. Z. Toroyan
%T On the minimal number of nodes uniquely determining algebraic curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 17-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/
%G en
%F UZERU_2015_3_a2
H. A. Hakopian; S. Z. Toroyan. On the minimal number of nodes uniquely determining algebraic curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 17-22. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a2/

[1] V.H. Bayramyan, H.A. Hakopian, S.Z. Toroyan, “On the uniqueness of algebraic curves”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 1, 3–7 | Zbl

[2] D. Eisenbud, M. Green, J. Harris, “Cayley–Bacharach Theorems and Conjectures”, Bull. Amer. Math. Soc. (N.S.), 33 (1996), 295–324 | DOI | MR | Zbl

[3] H. Hakopian, A. Malinyan, “Characterization of $n$-Independent Sets with no More than $3n$ Points”, Jaen J. Approx., 4 (2012), 121–136 | MR | Zbl

[4] H. Hakopian, K. Jetter, G. Zimmermann, “Vandermonde Matrices for Intersection Points of Curves”, Jaen J. Approx., 1 (2009), 67–81 | MR | Zbl

[5] L. Berzolari, “Sulla Determinazione di Una Curva o di Una Superficie Algebrica e su Alcune Questioni di Postulazione”, Rend. del R. Ist. Lombardo di Scienze e Lettere, 47 (1914), 556–564 | Zbl

[6] J. Radon, “Zur Mechanischen Kubatur”, Monatsh. Math., 52 (1948), 286–300 | DOI | MR | Zbl

[7] L. Rafayelyan, “Poised Nodes Set Constructions on Algebraic Curves”, East J. on Approx., 17 (2011), 285–298 | MR | Zbl

[8] J.M. Carnicer, M. Gasca, “Planar Configurations with Simple Lagrange Interpolation Formulae”, Mathematical Methods in Curves and Surfaces: Oslo 2000, eds. T. Lyche, L.L. Schumaker, Vanderbilt University Press, Nashville, 2000, 55–62 | MR

[9] J.M. Carnicer, M. Gasca, “Conjecture on Multivariate Polynomial Interpolation”, Rev. R. Acad. Cience. Exactas Fis. Nat., Ser. A, Math., 95 (2001), 145–153 | MR | Zbl

[10] Hakopian H., Mushyan G., “On Multivariate Segmental Interpolation Problem”, J. Comp. Sci. $\$ Appl. Math., 1 (2015), 19–29