Moore–Penrose inverse of bidiagonal matrices. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 8-16
Cet article a éte moissonné depuis la source Math-Net.Ru
The present paper is a direct continuation of the paper [1]. Here we start our study of the Moore–Penrose inversion problem for upper bidiagonal matrices with any arrangement of one or more zeros on the main diagonal. In the paper we obtain some preliminary results, which will be used in subsequent, third part of the study.
Keywords:
generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
Mots-clés : bidiagonal matrix.
@article{UZERU_2015_3_a1,
author = {Yu. R. Hakopian and S. S. Aleksanyan},
title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {II}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {8--16},
year = {2015},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/}
}
TY - JOUR AU - Yu. R. Hakopian AU - S. S. Aleksanyan TI - Moore–Penrose inverse of bidiagonal matrices. II JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 8 EP - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/ LA - en ID - UZERU_2015_3_a1 ER -
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 8-16. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/