Moore–Penrose inverse of bidiagonal matrices. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 8-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is a direct continuation of the paper [1]. Here we start our study of the Moore–Penrose inversion problem for upper bidiagonal matrices with any arrangement of one or more zeros on the main diagonal. In the paper we obtain some preliminary results, which will be used in subsequent, third part of the study.
Keywords: generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
@article{UZERU_2015_3_a1,
     author = {Yu. R. Hakopian and S. S. Aleksanyan},
     title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {II}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--16},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - S. S. Aleksanyan
TI  - Moore–Penrose inverse of bidiagonal matrices. II
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 8
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/
LA  - en
ID  - UZERU_2015_3_a1
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A S. S. Aleksanyan
%T Moore–Penrose inverse of bidiagonal matrices. II
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 8-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/
%G en
%F UZERU_2015_3_a1
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 8-16. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a1/

[1] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. I”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 2, 11–20

[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses. Theory and Applications, 2nd ed, Springer, NY, 2003 | MR | Zbl