Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2015_2_a2, author = {Yu. R. Hakopian and S. S. Aleksanyan}, title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {I}}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {11--20}, publisher = {mathdoc}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/} }
TY - JOUR AU - Yu. R. Hakopian AU - S. S. Aleksanyan TI - Moore–Penrose inverse of bidiagonal matrices. I JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 11 EP - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/ LA - en ID - UZERU_2015_2_a2 ER -
%0 Journal Article %A Yu. R. Hakopian %A S. S. Aleksanyan %T Moore–Penrose inverse of bidiagonal matrices. I %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2015 %P 11-20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/ %G en %F UZERU_2015_2_a2
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 11-20. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/
[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses. Theory and Applications, 2nd ed, Springer, NY, 2003 | MR | Zbl
[2] E. Moore, “On the Reciprocal of the General Algebraic Matrix”, Bull. Amer. Math. Soc., 26 (1920), 394–395
[3] R.A. Penrose, “Generalized Inverse for Matrices”, Proc. Cambridge Philos. Soc., 51 (1955), 406–413 | DOI | MR | Zbl
[4] G.H. Golub, Ch. F. van Loan, Matrix Computations, 3rd ed, The Johns Hopkins University Press, 1996 | MR | Zbl
[5] V.A. Martirosyan, “An Algorithm for Pseudoinversion of Bidiagonal Matrices”, Vestnik RAU. Fiziko-Matematicheskie i Estestvennye Nauki, 2008, no. 1, 71–79 (in Russian)
[6] Yu.R. Hakopian, V.A. Martirosyan, “About Parallelization of the Algorithm for Pseudoinversion of Matrices”, Proceedings of State Engineering University of Armenia. Modelling, Optimization, Control, 1:12 (2009), 19–27 (in Russian) | MR
[7] J.W. Lewis, “Invertion of Tridiagonal Matrices”, Numer. Math., 38 (1982), 333–345 | DOI | MR | Zbl