Moore–Penrose inverse of bidiagonal matrices. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 11-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we deduce closed form expressions for the entries of the Moore–Penrose inverse of a special type upper bidiagonal matrices. On the base of the formulae obtained, a finite algorithm with optimal order of computational complexity is constructed.
Keywords: generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
@article{UZERU_2015_2_a2,
     author = {Yu. R. Hakopian and S. S. Aleksanyan},
     title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {I}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--20},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - S. S. Aleksanyan
TI  - Moore–Penrose inverse of bidiagonal matrices. I
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 11
EP  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/
LA  - en
ID  - UZERU_2015_2_a2
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A S. S. Aleksanyan
%T Moore–Penrose inverse of bidiagonal matrices. I
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 11-20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/
%G en
%F UZERU_2015_2_a2
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 11-20. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/