Moore–Penrose inverse of bidiagonal matrices. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we deduce closed form expressions for the entries of the Moore–Penrose inverse of a special type upper bidiagonal matrices. On the base of the formulae obtained, a finite algorithm with optimal order of computational complexity is constructed.
Keywords: generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
@article{UZERU_2015_2_a2,
     author = {Yu. R. Hakopian and S. S. Aleksanyan},
     title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {I}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--20},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - S. S. Aleksanyan
TI  - Moore–Penrose inverse of bidiagonal matrices. I
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 11
EP  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/
LA  - en
ID  - UZERU_2015_2_a2
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A S. S. Aleksanyan
%T Moore–Penrose inverse of bidiagonal matrices. I
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 11-20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/
%G en
%F UZERU_2015_2_a2
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 11-20. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a2/

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses. Theory and Applications, 2nd ed, Springer, NY, 2003 | MR | Zbl

[2] E. Moore, “On the Reciprocal of the General Algebraic Matrix”, Bull. Amer. Math. Soc., 26 (1920), 394–395

[3] R.A. Penrose, “Generalized Inverse for Matrices”, Proc. Cambridge Philos. Soc., 51 (1955), 406–413 | DOI | MR | Zbl

[4] G.H. Golub, Ch. F. van Loan, Matrix Computations, 3rd ed, The Johns Hopkins University Press, 1996 | MR | Zbl

[5] V.A. Martirosyan, “An Algorithm for Pseudoinversion of Bidiagonal Matrices”, Vestnik RAU. Fiziko-Matematicheskie i Estestvennye Nauki, 2008, no. 1, 71–79 (in Russian)

[6] Yu.R. Hakopian, V.A. Martirosyan, “About Parallelization of the Algorithm for Pseudoinversion of Matrices”, Proceedings of State Engineering University of Armenia. Modelling, Optimization, Control, 1:12 (2009), 19–27 (in Russian) | MR

[7] J.W. Lewis, “Invertion of Tridiagonal Matrices”, Numer. Math., 38 (1982), 333–345 | DOI | MR | Zbl