Dynamical sampling with moving devices
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 31-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamical sampling problem is a new problem in sampling theory dealing with reconstruction of a function from its spatio-temporal samples. The question of reconstructing the signal, when the positions of measuring devices or sensors are not changing over time has been studied earlier. The focus of this paper is on the case when devices are allowed to move. This, for example, may happen when devices are placed on moving cars and measure the air pollution as they travel within a polluted area.
Keywords: sampling and reconstruction.
@article{UZERU_2015_1_a6,
     author = {A. L. Petrosyan},
     title = {Dynamical sampling with moving devices},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {31--35},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a6/}
}
TY  - JOUR
AU  - A. L. Petrosyan
TI  - Dynamical sampling with moving devices
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 31
EP  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a6/
LA  - en
ID  - UZERU_2015_1_a6
ER  - 
%0 Journal Article
%A A. L. Petrosyan
%T Dynamical sampling with moving devices
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 31-35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a6/
%G en
%F UZERU_2015_1_a6
A. L. Petrosyan. Dynamical sampling with moving devices. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 31-35. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a6/

[1] A. Aldroubi, J. Davis, I. Krishtal, “Dynamical Sampling: Time Space Trade-off”, Applied and Computational Harmonic Analysis, 34:3 (2013), 409–503 | DOI | MR

[2] R. Aceska, S. Tang, “Dynamic Sampling in Hybrid Shift Invariant Spaces”, AMS Contemporary Mathematics: (CONM) BS, 2014, 149–168 | DOI | MR

[3] J.Davis, “Dynamical Sampling in Infinite Dimensions with and without a Forcing Term”, AMS Contemporary Mathematics: (CONM) BS, 2014, 167–174 | DOI | MR

[4] A. Petrosyan, R. Aceska, A. Aldroubi, J. Davis, “Dynamical Sampling in Shift-Invariant Spaces”, AMS Contemporary Mathematics: (CONM) BS, 2014, 139–148 | MR

[5] A. Aldroubi, C. Cabrelli, U. Molter, S. Tang, Dynamical Sampling, 2014, arXiv: 1409.8333v1 [math.CA] | MR

[6] A. Aldroubi, I. Krishtal, Krylov Subspace Methods in Dynamical Sampling, 2014, arXiv: 1412.1538v1 [cs.IT]

[7] K. Gröchenig, J. Romero, J. Unnikrishnan, M. Vetterli, “On Minimal Trajectories for Mobile Sampling of Bandlimited Fields”, Applied and Computational Harmonic Analysis, 39:3 (2015), 487–510 ; arXiv: 1312.7794v2 [cs.IT] | DOI | MR | Zbl